Defensive programming: make sure that we don't fail completely if we get a callback for a NULL pointer

This commit is contained in:
Adam Dunkels 2013-03-17 23:38:14 +01:00
parent 82b755c017
commit f2fbb4b49d
1 changed files with 135 additions and 134 deletions

View File

@ -186,15 +186,19 @@ free_first_packet(struct neighbor_queue *n)
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
struct neighbor_queue *n = ptr;
struct rdc_buf_list *q = list_head(n->queued_packet_list);
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
struct neighbor_queue *n;
struct rdc_buf_list *q;
struct qbuf_metadata *metadata;
clock_time_t time = 0;
mac_callback_t sent;
void *cptr;
int num_tx;
int backoff_transmissions;
n = ptr;
if(n == NULL) {
return;
}
switch(status) {
case MAC_TX_OK:
case MAC_TX_NOACK:
@ -208,66 +212,72 @@ packet_sent(void *ptr, int status, int num_transmissions)
break;
}
sent = metadata->sent;
cptr = metadata->cptr;
num_tx = n->transmissions;
q = list_head(n->queued_packet_list);
if(q != NULL) {
metadata = (struct qbuf_metadata *)q->ptr;
if(status == MAC_TX_COLLISION ||
status == MAC_TX_NOACK) {
if(metadata != NULL) {
sent = metadata->sent;
cptr = metadata->cptr;
num_tx = n->transmissions;
if(status == MAC_TX_COLLISION ||
status == MAC_TX_NOACK) {
/* If the transmission was not performed because of a collision or
noack, we must retransmit the packet. */
switch(status) {
case MAC_TX_COLLISION:
PRINTF("csma: rexmit collision %d\n", n->transmissions);
break;
case MAC_TX_NOACK:
PRINTF("csma: rexmit noack %d\n", n->transmissions);
break;
default:
PRINTF("csma: rexmit err %d, %d\n", status, n->transmissions);
/* If the transmission was not performed because of a
collision or noack, we must retransmit the packet. */
switch(status) {
case MAC_TX_COLLISION:
PRINTF("csma: rexmit collision %d\n", n->transmissions);
break;
case MAC_TX_NOACK:
PRINTF("csma: rexmit noack %d\n", n->transmissions);
break;
default:
PRINTF("csma: rexmit err %d, %d\n", status, n->transmissions);
}
/* The retransmission time must be proportional to the channel
check interval of the underlying radio duty cycling layer. */
time = default_timebase();
/* The retransmission time uses a linear backoff so that the
interval between the transmissions increase with each
retransmit. */
backoff_transmissions = n->transmissions + 1;
/* Clamp the number of backoffs so that we don't get a too long
timeout here, since that will delay all packets in the
queue. */
if(backoff_transmissions > 3) {
backoff_transmissions = 3;
}
time = time + (random_rand() % (backoff_transmissions * time));
if(n->transmissions < metadata->max_transmissions) {
PRINTF("csma: retransmitting with time %lu %p\n", time, q);
ctimer_set(&n->transmit_timer, time,
transmit_packet_list, n);
/* This is needed to correctly attribute energy that we spent
transmitting this packet. */
queuebuf_update_attr_from_packetbuf(q->buf);
} else {
PRINTF("csma: drop with status %d after %d transmissions, %d collisions\n",
status, n->transmissions, n->collisions);
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
} else {
if(status == MAC_TX_OK) {
PRINTF("csma: rexmit ok %d\n", n->transmissions);
} else {
PRINTF("csma: rexmit failed %d: %d\n", n->transmissions, status);
}
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
}
/* The retransmission time must be proportional to the channel
check interval of the underlying radio duty cycling layer. */
time = default_timebase();
/* The retransmission time uses a linear backoff so that the
interval between the transmissions increase with each
retransmit. */
backoff_transmissions = n->transmissions + 1;
/* Clamp the number of backoffs so that we don't get a too long
timeout here, since that will delay all packets in the
queue. */
if(backoff_transmissions > 3) {
backoff_transmissions = 3;
}
time = time + (random_rand() % (backoff_transmissions * time));
if(n->transmissions < metadata->max_transmissions) {
PRINTF("csma: retransmitting with time %lu %p\n", time, q);
ctimer_set(&n->transmit_timer, time,
transmit_packet_list, n);
/* This is needed to correctly attribute energy that we spent
transmitting this packet. */
queuebuf_update_attr_from_packetbuf(q->buf);
} else {
PRINTF("csma: drop with status %d after %d transmissions, %d collisions\n",
status, n->transmissions, n->collisions);
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
} else {
if(status == MAC_TX_OK) {
PRINTF("csma: rexmit ok %d\n", n->transmissions);
} else {
PRINTF("csma: rexmit failed %d: %d\n", n->transmissions, status);
}
free_first_packet(n);
mac_call_sent_callback(sent, cptr, status, num_tx);
}
}
/*---------------------------------------------------------------------------*/
@ -277,86 +287,77 @@ send_packet(mac_callback_t sent, void *ptr)
struct rdc_buf_list *q;
struct neighbor_queue *n;
static uint16_t seqno;
const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);
packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);
/* If the packet is a broadcast, do not allocate a queue
entry. Instead, just send it out. */
if(!rimeaddr_cmp(packetbuf_addr(PACKETBUF_ADDR_RECEIVER),
&rimeaddr_null)) {
const rimeaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);
/* Look for the neighbor entry */
n = neighbor_queue_from_addr(addr);
if(n == NULL) {
/* Allocate a new neighbor entry */
n = memb_alloc(&neighbor_memb);
if(n != NULL) {
/* Init neighbor entry */
rimeaddr_copy(&n->addr, addr);
n->transmissions = 0;
n->collisions = 0;
n->deferrals = 0;
/* Init packet list for this neighbor */
LIST_STRUCT_INIT(n, queued_packet_list);
/* Add neighbor to the list */
list_add(neighbor_list, n);
}
}
/* Look for the neighbor entry */
n = neighbor_queue_from_addr(addr);
if(n == NULL) {
/* Allocate a new neighbor entry */
n = memb_alloc(&neighbor_memb);
if(n != NULL) {
/* Add packet to the neighbor's queue */
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->ptr = memb_alloc(&metadata_memb);
if(q->ptr != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q->buf != NULL) {
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
/* Neighbor and packet successfully allocated */
if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
/* Use default configuration for max transmissions */
metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
} else {
metadata->max_transmissions =
packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
}
metadata->sent = sent;
metadata->cptr = ptr;
if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
PACKETBUF_ATTR_PACKET_TYPE_ACK) {
list_push(n->queued_packet_list, q);
} else {
list_add(n->queued_packet_list, q);
}
/* If q is the first packet in the neighbor's queue, send asap */
if(list_head(n->queued_packet_list) == q) {
ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
}
return;
}
memb_free(&metadata_memb, q->ptr);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
memb_free(&packet_memb, q);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
/* The packet allocation failed. Remove and free neighbor entry if empty. */
if(list_length(n->queued_packet_list) == 0) {
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
PRINTF("csma: could not allocate packet, dropping packet\n");
} else {
PRINTF("csma: could not allocate neighbor, dropping packet\n");
/* Init neighbor entry */
rimeaddr_copy(&n->addr, addr);
n->transmissions = 0;
n->collisions = 0;
n->deferrals = 0;
/* Init packet list for this neighbor */
LIST_STRUCT_INIT(n, queued_packet_list);
/* Add neighbor to the list */
list_add(neighbor_list, n);
}
mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
} else {
PRINTF("csma: send broadcast\n");
NETSTACK_RDC.send(sent, ptr);
}
if(n != NULL) {
/* Add packet to the neighbor's queue */
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->ptr = memb_alloc(&metadata_memb);
if(q->ptr != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q->buf != NULL) {
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
/* Neighbor and packet successfully allocated */
if(packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS) == 0) {
/* Use default configuration for max transmissions */
metadata->max_transmissions = CSMA_MAX_MAC_TRANSMISSIONS;
} else {
metadata->max_transmissions =
packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
}
metadata->sent = sent;
metadata->cptr = ptr;
if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) ==
PACKETBUF_ATTR_PACKET_TYPE_ACK) {
list_push(n->queued_packet_list, q);
} else {
list_add(n->queued_packet_list, q);
}
/* If q is the first packet in the neighbor's queue, send asap */
if(list_head(n->queued_packet_list) == q) {
ctimer_set(&n->transmit_timer, 0, transmit_packet_list, n);
}
return;
}
memb_free(&metadata_memb, q->ptr);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
memb_free(&packet_memb, q);
PRINTF("csma: could not allocate queuebuf, dropping packet\n");
}
/* The packet allocation failed. Remove and free neighbor entry if empty. */
if(list_length(n->queued_packet_list) == 0) {
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
PRINTF("csma: could not allocate packet, dropping packet\n");
} else {
PRINTF("csma: could not allocate neighbor, dropping packet\n");
}
mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
static void