/* * Copyright (c) 2018, Texas Instruments Incorporated - http://www.ti.com/ * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ /*---------------------------------------------------------------------------*/ /** * \addtogroup rf-core * @{ * * \defgroup rf-core-ieee CC13xx/CC26xx IEEE mode driver * * @{ * * \file * Implementation of the CC13xx/CC26xx IEEE mode NETSTACK_RADIO driver */ /*---------------------------------------------------------------------------*/ #include "contiki.h" #include "net/packetbuf.h" #include "net/linkaddr.h" #include "net/netstack.h" #include "sys/energest.h" #include "sys/clock.h" #include "sys/rtimer.h" #include "sys/ctimer.h" #include "sys/cc.h" /*---------------------------------------------------------------------------*/ /* RF driver and RF Core API */ #include <ti/devices/DeviceFamily.h> #include DeviceFamily_constructPath(driverlib/rf_common_cmd.h) #include DeviceFamily_constructPath(driverlib/rf_data_entry.h) #include DeviceFamily_constructPath(driverlib/rf_mailbox.h) /* * rf_ieee_cmd.h and rf_ieee_mailbox.h are included by RF settings because a * discrepancy between CC13x0 and CC13x2 IEEE support. CC13x0 doesn't provide * RFCore definitions of IEEE commands, and are therefore included locally * from the Contiki build system. CC13x2 includes these normally from driverlib. * This is taken care of RF settings. */ #include <ti/drivers/rf/RF.h> /*---------------------------------------------------------------------------*/ /* SimpleLink Platform RF dev */ #include "rf-data-queue.h" #include "rf-core.h" #include "dot-15-4g.h" #include "netstack-settings.h" #include RF_IEEE_SETTINGS /*---------------------------------------------------------------------------*/ #include <stdint.h> #include <stddef.h> #include <string.h> #include <stdio.h> #include <stdbool.h> /*---------------------------------------------------------------------------*/ #if 1 # define PRINTF(...) #else # define PRINTF(...) printf(__VA_ARGS__) #endif /*---------------------------------------------------------------------------*/ /* Configuration parameters */ /* Configuration to enable/disable auto ACKs in IEEE mode */ #ifdef IEEE_MODE_CONF_AUTOACK # define IEEE_MODE_AUTOACK IEEE_MODE_CONF_AUTOACK #else # define IEEE_MODE_AUTOACK 1 #endif /* IEEE_MODE_CONF_AUTOACK */ /* Configuration to enable/disable frame filtering in IEEE mode */ #ifdef IEEE_MODE_CONF_PROMISCOUS # define IEEE_MODE_PROMISCOUS IEEE_MODE_CONF_PROMISCOUS #else # define IEEE_MODE_PROMISCOUS 0 #endif /* IEEE_MODE_CONF_PROMISCOUS */ /* Configuration to set the RSSI threshold */ #ifdef IEEE_MODE_CONF_RSSI_THRESHOLD # define IEEE_MODE_RSSI_THRESHOLD IEEE_MODE_CONF_RSSI_THRESHOLD #else # define IEEE_MODE_RSSI_THRESHOLD 0xA6 #endif /* IEEE_MODE_CONF_RSSI_THRESHOLD */ /*---------------------------------------------------------------------------*/ /* TX power table convenience macros */ #define TX_POWER_TABLE rf_ieee_tx_power_table #define TX_POWER_TABLE_SIZE rf_ieee_tx_power_table_size #define TX_POWER_MIN (TX_POWER_TABLE[0].power) #define TX_POWER_MAX (TX_POWER_TABLE[TX_POWER_TABLE_SIZE - 1].power) #define TX_POWER_IN_RANGE(dbm) (((dbm) >= TX_POWER_MIN) && ((dbm) <= TX_POWER_MAX)) /*---------------------------------------------------------------------------*/ /* Timeout constants */ /* How long to wait for the rx read entry to become ready */ #define TIMEOUT_DATA_ENTRY_BUSY (RTIMER_SECOND / 250) /* How long to wait for RX to become active after scheduled */ #define TIMEOUT_ENTER_RX_WAIT (RTIMER_SECOND >> 10) /*---------------------------------------------------------------------------*/ #define RAT_RANGE (~(uint32_t)0) #define RAT_ONE_QUARTER (RAT_RANGE / (uint32_t)4) #define RAT_THREE_QUARTERS ((RAT_RANGE * (uint32_t)3) / (uint32_t)4) /* XXX: don't know what exactly is this, looks like the time to TX 3 octets */ #define RAT_TIMESTAMP_OFFSET -(USEC_TO_RAT(32 * 3) - 1) /* -95.75 usec */ /*---------------------------------------------------------------------------*/ #define STATUS_CORRELATION 0x3f /* bits 0-5 */ #define STATUS_REJECT_FRAME 0x40 /* bit 6 */ #define STATUS_CRC_FAIL 0x80 /* bit 7 */ /*---------------------------------------------------------------------------*/ #define FRAME_FCF_OFFSET 0 #define FRAME_SEQNUM_OFFSET 2 #define FRAME_ACK_REQUEST 0x20 /* bit 5 */ /* TX buf configuration */ #define TX_BUF_SIZE 180 /*---------------------------------------------------------------------------*/ /* Size of the Length representation in Data Entry, one byte in this case */ typedef uint8_t lensz_t; #define FRAME_OFFSET sizeof(lensz_t) #define FRAME_SHAVE 8 /* FCS (2) + RSSI (1) + Status (1) + Timestamp (4) */ /*---------------------------------------------------------------------------*/ /* Used for checking result of CCA_REQ command */ typedef enum { CCA_STATE_IDLE = 0, CCA_STATE_BUSY = 1, CCA_STATE_INVALID = 2 } cca_state_t; /*---------------------------------------------------------------------------*/ /* RF Core typedefs */ typedef rfc_ieeeRxOutput_t rx_output_t; typedef rfc_CMD_IEEE_MOD_FILT_t cmd_mod_filt_t; typedef rfc_CMD_IEEE_CCA_REQ_t cmd_cca_req_t; typedef struct { /* Outgoing frame buffer */ uint8_t tx_buf[TX_BUF_SIZE] CC_ALIGN(4); /* RF Statistics struct */ rx_output_t rx_stats; /* Indicates RF is supposed to be on or off */ bool rf_is_on; /* Enable/disable CCA before sending */ bool send_on_cca; /* Are we currently in poll mode? */ bool poll_mode; /* Last RX operation stats */ struct { int8_t rssi; uint8_t corr_lqi; uint32_t timestamp; } last; /* RAT Overflow Upkeep */ struct { struct ctimer overflow_timer; rtimer_clock_t last_overflow; volatile uint32_t overflow_count; } rat; /* RF driver */ RF_Handle rf_handle; } ieee_radio_t; static ieee_radio_t ieee_radio; /* Global RF Core commands */ static cmd_mod_filt_t cmd_mod_filt; /*---------------------------------------------------------------------------*/ /* RF Command volatile objects */ #define cmd_radio_setup (*(volatile rfc_CMD_RADIO_SETUP_t*)&rf_cmd_ieee_radio_setup) #define cmd_fs (*(volatile rfc_CMD_FS_t*) &rf_cmd_ieee_fs) #define cmd_tx (*(volatile rfc_CMD_IEEE_TX_t*) &rf_cmd_ieee_tx) #define cmd_rx (*(volatile rfc_CMD_IEEE_RX_t*) &rf_cmd_ieee_rx) #define cmd_rx_ack (*(volatile rfc_CMD_IEEE_RX_ACK_t*)&rf_cmd_ieee_rx_ack) /*---------------------------------------------------------------------------*/ static inline bool rx_is_active(void) { return cmd_rx.status == ACTIVE; } /*---------------------------------------------------------------------------*/ /* Forward declarations of local functions */ static void check_rat_overflow(void); static uint32_t rat_to_timestamp(const uint32_t); /*---------------------------------------------------------------------------*/ /* Forward declarations of Radio driver functions */ static int init(void); static int prepare(const void*, unsigned short); static int transmit(unsigned short); static int send(const void*, unsigned short); static int read(void*, unsigned short); static int channel_clear(void); static int receiving_packet(void); static int pending_packet(void); static int on(void); static int off(void); static radio_result_t get_value(radio_param_t, radio_value_t*); static radio_result_t set_value(radio_param_t, radio_value_t); static radio_result_t get_object(radio_param_t, void*, size_t); static radio_result_t set_object(radio_param_t, const void*, size_t); /*---------------------------------------------------------------------------*/ /* Radio driver object */ const struct radio_driver ieee_mode_driver = { init, prepare, transmit, send, read, channel_clear, receiving_packet, pending_packet, on, off, get_value, set_value, get_object, set_object, }; /*---------------------------------------------------------------------------*/ static void rat_overflow_cb(void *arg) { check_rat_overflow(); /* Check next time after half of the RAT interval */ const clock_time_t two_quarters = (2 * RAT_ONE_QUARTER * CLOCK_SECOND) / RAT_SECOND; ctimer_set(&ieee_radio.rat.overflow_timer, two_quarters, rat_overflow_cb, NULL); } /*---------------------------------------------------------------------------*/ static void init_rf_params(void) { data_queue_t *rx_q = data_queue_init(sizeof(lensz_t)); cmd_rx.pRxQ = rx_q; cmd_rx.pOutput = &ieee_radio.rx_stats; #if IEEE_MODE_PROMISCOUS cmd_rx.frameFiltOpt.frameFiltEn = 0; #else cmd_rx.frameFiltOpt.frameFiltEn = 1; #endif #if IEEE_MODE_AUTOACK cmd_rx.frameFiltOpt.autoAckEn = 1; #else cmd_rx.frameFiltOpt.autoAckEn = 0; #endif cmd_rx.ccaRssiThr = IEEE_MODE_RSSI_THRESHOLD; cmd_tx.pNextOp = (RF_Op*)&cmd_rx_ack; cmd_tx.condition.rule = COND_NEVER; /* Initially ACK turned off */ /* * ACK packet is transmitted 192 us after the end of the received packet, * takes 352 us for ACK transmission, total of 546 us of expected time to * recieve ACK in ideal conditions. 700 us endTime for CMD_IEEE_RX_ACK * should give some margins. * The ACK frame consists of 6 bytes of SHR/PDR and 5 bytes of PSDU, total * of 11 bytes. 11 bytes x 32 us/byte equals 352 us of ACK transmission time. */ cmd_rx_ack.startTrigger.triggerType = TRIG_NOW; cmd_rx_ack.endTrigger.triggerType = TRIG_REL_START; cmd_rx_ack.endTime = RF_convertUsToRatTicks(700); /* Initialize address filter command */ cmd_mod_filt.commandNo = CMD_IEEE_MOD_FILT; memcpy(&(cmd_mod_filt.newFrameFiltOpt), &(rf_cmd_ieee_rx.frameFiltOpt), sizeof(rf_cmd_ieee_rx.frameFiltOpt)); memcpy(&(cmd_mod_filt.newFrameTypes), &(rf_cmd_ieee_rx.frameTypes), sizeof(rf_cmd_ieee_rx.frameTypes)); } /*---------------------------------------------------------------------------*/ static rf_result_t set_channel(uint8_t channel) { if (!dot_15_4g_chan_in_range(channel)) { PRINTF("set_channel: illegal channel %d, defaults to %d\n", (int)channel, DOT_15_4G_DEFAULT_CHAN); channel = DOT_15_4G_DEFAULT_CHAN; } /* * cmd_rx.channel is initialized to 0, causing any initial call to * set_channel() to cause a synth calibration, since channel must be in * range 11-26. */ if (channel == cmd_rx.channel) { /* We are already calibrated to this channel */ return true; } cmd_rx.channel = channel; const uint32_t new_freq = dot_15_4g_freq(channel); const uint16_t freq = (uint16_t)(new_freq / 1000); const uint16_t frac = (uint16_t)(((new_freq - (freq * 1000)) * 0x10000) / 1000); PRINTF("set_channel: %d = 0x%04X.0x%04X (%lu)\n", (int)channel, freq, frac, new_freq); cmd_fs.frequency = freq; cmd_fs.fractFreq = frac; return netstack_sched_fs(); } /*---------------------------------------------------------------------------*/ static void set_send_on_cca(bool enable) { ieee_radio.send_on_cca = enable; } /*---------------------------------------------------------------------------*/ static void check_rat_overflow(void) { const bool was_off = !rx_is_active(); if (was_off) { RF_runDirectCmd(ieee_radio.rf_handle, CMD_NOP); } const uint32_t current_value = RF_getCurrentTime(); static bool initial_iteration = true; static uint32_t last_value; if (initial_iteration) { /* First time checking overflow will only store the current value */ initial_iteration = false; } else { /* Overflow happens in the last quarter of the RAT range */ if ((current_value + RAT_ONE_QUARTER) < last_value) { /* Overflow detected */ ieee_radio.rat.last_overflow = RTIMER_NOW(); ieee_radio.rat.overflow_count += 1; } } last_value = current_value; if (was_off) { RF_yield(ieee_radio.rf_handle); } } /*---------------------------------------------------------------------------*/ static uint32_t rat_to_timestamp(const uint32_t rat_ticks) { check_rat_overflow(); uint64_t adjusted_overflow_count = ieee_radio.rat.overflow_count; /* If the timestamp is in the 4th quarter and the last overflow was recently, * assume that the timestamp refers to the time before the overflow */ if (rat_ticks > RAT_THREE_QUARTERS) { const rtimer_clock_t one_quarter = (RAT_ONE_QUARTER * RTIMER_SECOND) / RAT_SECOND; if (RTIMER_CLOCK_LT(RTIMER_NOW(), ieee_radio.rat.last_overflow + one_quarter)) { adjusted_overflow_count -= 1; } } /* Add the overflowed time to the timestamp */ const uint64_t rat_ticks_adjusted = (uint64_t)rat_ticks + (uint64_t)RAT_RANGE * adjusted_overflow_count; /* Correct timestamp so that it refers to the end of the SFD and convert to RTIMER */ return RAT_TO_RTIMER(rat_ticks_adjusted + RAT_TIMESTAMP_OFFSET); } /*---------------------------------------------------------------------------*/ static int init(void) { if (ieee_radio.rf_handle) { PRINTF("init: Radio already initialized\n"); return RF_RESULT_OK; } /* RX is off */ ieee_radio.rf_is_on = false; init_rf_params(); /* Init RF params and specify non-default params */ RF_Params rf_params; RF_Params_init(&rf_params); rf_params.nInactivityTimeout = 2000; /* 2 ms */ ieee_radio.rf_handle = netstack_open(&rf_params); if (ieee_radio.rf_handle == NULL) { PRINTF("init: unable to open IEEE RF driver\n"); return RF_RESULT_ERROR; } set_channel(DOT_15_4G_DEFAULT_CHAN); ENERGEST_ON(ENERGEST_TYPE_LISTEN); /* Start RAT overflow upkeep */ check_rat_overflow(); clock_time_t two_quarters = (2 * RAT_ONE_QUARTER * CLOCK_SECOND) / RAT_SECOND; ctimer_set(&ieee_radio.rat.overflow_timer, two_quarters, rat_overflow_cb, NULL); /* Start RF process */ process_start(&rf_core_process, NULL); return RF_RESULT_OK; } /*---------------------------------------------------------------------------*/ static int prepare(const void *payload, unsigned short payload_len) { const size_t len = MIN((size_t)payload_len, (size_t)TX_BUF_SIZE); memcpy(ieee_radio.tx_buf, payload, len); return 0; } /*---------------------------------------------------------------------------*/ static int transmit(unsigned short transmit_len) { rf_result_t res; if (ieee_radio.send_on_cca && channel_clear() != 1) { PRINTF("transmit: channel wasn't clear\n"); return RADIO_TX_COLLISION; } /* * Are we expecting ACK? The ACK Request flag is in the first Frame * Control Field byte, that is the first byte in the frame. */ const bool ack_request = (bool)(ieee_radio.tx_buf[FRAME_FCF_OFFSET] & FRAME_ACK_REQUEST); if (ack_request) { /* Yes, turn on chaining */ cmd_tx.condition.rule = COND_STOP_ON_FALSE; /* Reset CMD_IEEE_RX_ACK command */ cmd_rx_ack.status = IDLE; /* Sequence number is the third byte in the frame */ cmd_rx_ack.seqNo = ieee_radio.tx_buf[FRAME_SEQNUM_OFFSET]; } else { /* No, turn off chaining */ cmd_tx.condition.rule = COND_NEVER; } /* Configure TX command */ cmd_tx.payloadLen = (uint8_t)transmit_len; cmd_tx.pPayload = ieee_radio.tx_buf; res = netstack_sched_ieee_tx(ack_request); if (res != RF_RESULT_OK) { return RADIO_TX_ERR; } if (ack_request) { switch(cmd_rx_ack.status) { /* CMD_IEEE_RX_ACK timed out, i.e. never received ACK */ case IEEE_DONE_TIMEOUT: return RADIO_TX_NOACK; /* An ACK was received with either pending data bit set or cleared */ case IEEE_DONE_ACK: /* fallthrough */ case IEEE_DONE_ACKPEND: return RADIO_TX_OK; /* Any other statuses are errors */ default: return RADIO_TX_ERR; } } /* No ACK expected, TX OK */ return RADIO_TX_OK; } /*---------------------------------------------------------------------------*/ static int send(const void *payload, unsigned short payload_len) { prepare(payload, payload_len); return transmit(payload_len); } /*---------------------------------------------------------------------------*/ static int read(void *buf, unsigned short buf_len) { volatile data_entry_t *data_entry = data_queue_current_entry(); const rtimer_clock_t t0 = RTIMER_NOW(); /* Only wait if the Radio timer is accessing the entry */ while ((data_entry->status == DATA_ENTRY_BUSY) && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + TIMEOUT_DATA_ENTRY_BUSY)); if (data_entry->status != DATA_ENTRY_FINISHED) { /* No available data */ return 0; } /* * First byte in the data entry is the length. * Data frame is on the following format: * Length (1) + Payload (N) + FCS (2) + RSSI (1) + Status (1) + Timestamp (4) * Data frame DOES NOT contain the following: * no PHY Header bytes * no Source Index bytes * +--------+---------+---------+--------+--------+-----------+ * | 1 byte | N bytes | 2 bytes | 1 byte | 1 byte | 4 bytes | * +--------+---------+---------+--------+--------+-----------+ * | Length | Payload | FCS | RSSI | Status | Timestamp | * +--------+---------+---------+--------+--------+-----------+ * Length bytes equal total length of entire frame excluding itself, * Length = N + FCS (2) + RSSI (1) + Status (1) + Timestamp (4) * Length = N + 8 * N = Length - 8 */ uint8_t *const frame_ptr = (uint8_t*)&data_entry->data; const lensz_t frame_len = *(lensz_t*)frame_ptr; /* Sanity check that Frame is at least Frame Shave bytes long */ if (frame_len < FRAME_SHAVE) { PRINTF("read: frame too short len=%d\n", frame_len); data_queue_release_entry(); return 0; } const uint8_t *payload_ptr = frame_ptr + sizeof(lensz_t); const unsigned short payload_len = (unsigned short)(frame_len - FRAME_SHAVE); /* Sanity check that Payload fits in Buffer */ if (payload_len > buf_len) { PRINTF("read: payload too large for buffer len=%d buf_len=%d\n", payload_len, buf_len); data_queue_release_entry(); return 0; } memcpy(buf, payload_ptr, payload_len); /* RSSI stored FCS (2) bytes after payload */ ieee_radio.last.rssi = (int8_t)payload_ptr[payload_len + 2]; /* LQI retrieved from Status byte, FCS (2) + RSSI (1) bytes after payload */ ieee_radio.last.corr_lqi = (uint8_t)(payload_ptr[payload_len + 3] & STATUS_CORRELATION); /* Timestamp stored FCS (2) + RSSI (1) + Status (1) bytes after payload */ const uint32_t rat_ticks = *(uint32_t*)(payload_ptr + payload_len + 4); ieee_radio.last.timestamp = rat_to_timestamp(rat_ticks); if (!ieee_radio.poll_mode) { /* Not in poll mode: packetbuf should not be accessed in interrupt context. */ /* In poll mode, the last packet RSSI and link quality can be obtained through */ /* RADIO_PARAM_LAST_RSSI and RADIO_PARAM_LAST_LINK_QUALITY */ packetbuf_set_attr(PACKETBUF_ATTR_RSSI, (packetbuf_attr_t)ieee_radio.last.rssi); packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, (packetbuf_attr_t)ieee_radio.last.corr_lqi); } data_queue_release_entry(); return (int)payload_len; } /*---------------------------------------------------------------------------*/ static rf_result_t cca_request(cmd_cca_req_t *cmd_cca_req) { rf_result_t res; const bool rx_is_idle = !rx_is_active(); if (rx_is_idle) { res = netstack_sched_rx(false); if (res != RF_RESULT_OK) { return RF_RESULT_ERROR; } } const rtimer_clock_t t0 = RTIMER_NOW(); while ((cmd_rx.status != ACTIVE) && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + TIMEOUT_ENTER_RX_WAIT)); RF_Stat stat = RF_StatRadioInactiveError; if (rx_is_active()) { stat = RF_runImmediateCmd(ieee_radio.rf_handle, (uint32_t*)&cmd_cca_req); } if (rx_is_idle) { netstack_stop_rx(); } return (stat == RF_StatCmdDoneSuccess) ? RF_RESULT_OK : RF_RESULT_ERROR; } /*---------------------------------------------------------------------------*/ static int channel_clear(void) { cmd_cca_req_t cmd_cca_req; memset(&cmd_cca_req, 0x0, sizeof(cmd_cca_req_t)); cmd_cca_req.commandNo = CMD_IEEE_CCA_REQ; if (cca_request(&cmd_cca_req) != RF_RESULT_OK) { return 0; } /* Channel is clear if CCA state is IDLE */ return (cmd_cca_req.ccaInfo.ccaState == CCA_STATE_IDLE); } /*---------------------------------------------------------------------------*/ static int receiving_packet(void) { cmd_cca_req_t cmd_cca_req; memset(&cmd_cca_req, 0x0, sizeof(cmd_cca_req_t)); cmd_cca_req.commandNo = CMD_IEEE_CCA_REQ; if (cca_request(&cmd_cca_req) != RF_RESULT_OK) { return 0; } /* If we are transmitting (can only be an ACK here), we are not receiving */ if ((cmd_cca_req.ccaInfo.ccaEnergy == CCA_STATE_BUSY) && (cmd_cca_req.ccaInfo.ccaCorr == CCA_STATE_BUSY) && (cmd_cca_req.ccaInfo.ccaSync == CCA_STATE_BUSY)) { PRINTF("receiving_packet: we were TXing ACK\n"); return 0; } /* We are receiving a packet if a CCA sync has been seen, i.e. ccaSync is busy (1) */ return (cmd_cca_req.ccaInfo.ccaSync == CCA_STATE_BUSY); } /*---------------------------------------------------------------------------*/ static int pending_packet(void) { const data_entry_t *const read_entry = data_queue_current_entry(); volatile const data_entry_t *curr_entry = read_entry; int num_pending = 0; /* Go through RX Circular buffer and check each data entry status */ do { const uint8_t status = curr_entry->status; if ((status == DATA_ENTRY_FINISHED) || (status == DATA_ENTRY_BUSY)) { num_pending += 1; } /* Stop when we have looped the circular buffer */ curr_entry = (data_entry_t *)curr_entry->pNextEntry; } while (curr_entry != read_entry); if ((num_pending > 0) && !ieee_radio.poll_mode) { process_poll(&rf_core_process); } /* If we didn't find an entry at status finished or busy, no frames are pending */ return num_pending; } /*---------------------------------------------------------------------------*/ static int on(void) { rf_result_t res; if (ieee_radio.rf_is_on) { PRINTF("on: Radio already on\n"); return RF_RESULT_OK; } data_queue_reset(); res = netstack_sched_rx(true); if (res != RF_RESULT_OK) { return RF_RESULT_ERROR; } ieee_radio.rf_is_on = true; return RF_RESULT_OK; } /*---------------------------------------------------------------------------*/ static int off(void) { if (!ieee_radio.rf_is_on) { PRINTF("off: Radio already off\n"); return RF_RESULT_OK; } rf_yield(); ieee_radio.rf_is_on = false; return RF_RESULT_OK; } /*---------------------------------------------------------------------------*/ static radio_result_t get_value(radio_param_t param, radio_value_t *value) { rf_result_t res; if (!value) { return RADIO_RESULT_INVALID_VALUE; } switch (param) { /* Power Mode */ case RADIO_PARAM_POWER_MODE: *value = (ieee_radio.rf_is_on) ? RADIO_POWER_MODE_ON : RADIO_POWER_MODE_OFF; return RADIO_RESULT_OK; /* Channel */ case RADIO_PARAM_CHANNEL: *value = (radio_value_t)cmd_rx.channel; return RADIO_RESULT_OK; /* PAN ID */ case RADIO_PARAM_PAN_ID: *value = (radio_value_t)cmd_rx.localPanID; return RADIO_RESULT_OK; /* 16-bit address */ case RADIO_PARAM_16BIT_ADDR: *value = (radio_value_t)cmd_rx.localShortAddr; return RADIO_RESULT_OK; /* RX mode */ case RADIO_PARAM_RX_MODE: *value = 0; if (cmd_rx.frameFiltOpt.frameFiltEn) { *value |= (radio_value_t)RADIO_RX_MODE_ADDRESS_FILTER; } if (cmd_rx.frameFiltOpt.autoAckEn) { *value |= (radio_value_t)RADIO_RX_MODE_AUTOACK; } if (ieee_radio.poll_mode) { *value |= (radio_value_t)RADIO_RX_MODE_POLL_MODE; } return RADIO_RESULT_OK; /* TX mode */ case RADIO_PARAM_TX_MODE: *value = 0; return RADIO_RESULT_OK; /* TX power */ case RADIO_PARAM_TXPOWER: res = rf_get_tx_power(ieee_radio.rf_handle, TX_POWER_TABLE, (int8_t*)&value); return ((res == RF_RESULT_OK) && (*value != RF_TxPowerTable_INVALID_DBM)) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; /* CCA threshold */ case RADIO_PARAM_CCA_THRESHOLD: *value = cmd_rx.ccaRssiThr; return RADIO_RESULT_OK; /* RSSI */ case RADIO_PARAM_RSSI: *value = RF_getRssi(ieee_radio.rf_handle); return (*value == RF_GET_RSSI_ERROR_VAL) ? RADIO_RESULT_ERROR : RADIO_RESULT_OK; /* Channel min */ case RADIO_CONST_CHANNEL_MIN: *value = (radio_value_t)DOT_15_4G_CHAN_MIN; return RADIO_RESULT_OK; /* Channel max */ case RADIO_CONST_CHANNEL_MAX: *value = (radio_value_t)DOT_15_4G_CHAN_MAX; return RADIO_RESULT_OK; case RADIO_CONST_TXPOWER_MIN: *value = (radio_value_t)TX_POWER_MIN; return RADIO_RESULT_OK; /* TX power max */ case RADIO_CONST_TXPOWER_MAX: *value = (radio_value_t)TX_POWER_MAX; return RADIO_RESULT_OK; /* Last RSSI */ case RADIO_PARAM_LAST_RSSI: *value = (radio_value_t)ieee_radio.last.rssi; return RADIO_RESULT_OK; /* Last link quality */ case RADIO_PARAM_LAST_LINK_QUALITY: *value = (radio_value_t)ieee_radio.last.corr_lqi; return RADIO_RESULT_OK; default: return RADIO_RESULT_NOT_SUPPORTED; } } /*---------------------------------------------------------------------------*/ static radio_result_t set_value(radio_param_t param, radio_value_t value) { rf_result_t res; switch (param) { /* Power Mode */ case RADIO_PARAM_POWER_MODE: if (value == RADIO_POWER_MODE_ON) { return (on() == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; } else if (value == RADIO_POWER_MODE_OFF) { off(); return RADIO_RESULT_OK; } return RADIO_RESULT_INVALID_VALUE; /* Channel */ case RADIO_PARAM_CHANNEL: if (!dot_15_4g_chan_in_range(value)) { return RADIO_RESULT_INVALID_VALUE; } set_channel((uint8_t)value); return RADIO_RESULT_OK; /* PAN ID */ case RADIO_PARAM_PAN_ID: cmd_rx.localPanID = (uint16_t)value; if (!ieee_radio.rf_is_on) { return RADIO_RESULT_OK; } netstack_stop_rx(); res = netstack_sched_rx(false); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; /* 16bit address */ case RADIO_PARAM_16BIT_ADDR: cmd_rx.localShortAddr = (uint16_t)value; if (!ieee_radio.rf_is_on) { return RADIO_RESULT_OK; } netstack_stop_rx(); res = netstack_sched_rx(false); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; /* RX Mode */ case RADIO_PARAM_RX_MODE: { if (value & ~(RADIO_RX_MODE_ADDRESS_FILTER | RADIO_RX_MODE_AUTOACK | RADIO_RX_MODE_POLL_MODE)) { return RADIO_RESULT_INVALID_VALUE; } cmd_rx.frameFiltOpt.frameFiltEn = (value & RADIO_RX_MODE_ADDRESS_FILTER) != 0; cmd_rx.frameFiltOpt.frameFiltStop = 1; cmd_rx.frameFiltOpt.autoAckEn = (value & RADIO_RX_MODE_AUTOACK) != 0; cmd_rx.frameFiltOpt.slottedAckEn = 0; cmd_rx.frameFiltOpt.autoPendEn = 0; cmd_rx.frameFiltOpt.defaultPend = 0; cmd_rx.frameFiltOpt.bPendDataReqOnly = 0; cmd_rx.frameFiltOpt.bPanCoord = 0; cmd_rx.frameFiltOpt.bStrictLenFilter = 0; const bool old_poll_mode = ieee_radio.poll_mode; ieee_radio.poll_mode = (value & RADIO_RX_MODE_POLL_MODE) != 0; if (old_poll_mode == ieee_radio.poll_mode) { /* Do not turn the radio off and on, just send an update command */ memcpy(&cmd_mod_filt.newFrameFiltOpt, &(rf_cmd_ieee_rx.frameFiltOpt), sizeof(rf_cmd_ieee_rx.frameFiltOpt)); const RF_Stat stat = RF_runImmediateCmd(ieee_radio.rf_handle, (uint32_t*)&cmd_mod_filt); if (stat != RF_StatCmdDoneSuccess) { PRINTF("setting address filter failed: stat=0x%02X\n", stat); return RADIO_RESULT_ERROR; } return RADIO_RESULT_OK; } if (!ieee_radio.rf_is_on) { return RADIO_RESULT_OK; } netstack_stop_rx(); res = netstack_sched_rx(false); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; } /* TX Mode */ case RADIO_PARAM_TX_MODE: if(value & ~(RADIO_TX_MODE_SEND_ON_CCA)) { return RADIO_RESULT_INVALID_VALUE; } set_send_on_cca((value & RADIO_TX_MODE_SEND_ON_CCA) != 0); return RADIO_RESULT_OK; /* TX Power */ case RADIO_PARAM_TXPOWER: if (!TX_POWER_IN_RANGE((int8_t)value)) { return RADIO_RESULT_INVALID_VALUE; } res = rf_set_tx_power(ieee_radio.rf_handle, TX_POWER_TABLE, (int8_t)value); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; /* CCA Threshold */ case RADIO_PARAM_CCA_THRESHOLD: cmd_rx.ccaRssiThr = (int8_t)value; if (!ieee_radio.rf_is_on) { return RADIO_RESULT_OK; } netstack_stop_rx(); res = netstack_sched_rx(false); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; default: return RADIO_RESULT_NOT_SUPPORTED; } } /*---------------------------------------------------------------------------*/ static radio_result_t get_object(radio_param_t param, void *dest, size_t size) { if (!dest) { return RADIO_RESULT_INVALID_VALUE; } switch (param) { /* 64bit address */ case RADIO_PARAM_64BIT_ADDR: { const size_t srcSize = sizeof(cmd_rx.localExtAddr); if(size != srcSize) { return RADIO_RESULT_INVALID_VALUE; } const uint8_t *pSrc = (uint8_t *)&(cmd_rx.localExtAddr); uint8_t *pDest = dest; for(size_t i = 0; i < srcSize; ++i) { pDest[i] = pSrc[srcSize - 1 - i]; } return RADIO_RESULT_OK; } /* Last packet timestamp */ case RADIO_PARAM_LAST_PACKET_TIMESTAMP: if(size != sizeof(rtimer_clock_t)) { return RADIO_RESULT_INVALID_VALUE; } *(rtimer_clock_t *)dest = ieee_radio.last.timestamp; return RADIO_RESULT_OK; default: return RADIO_RESULT_NOT_SUPPORTED; } } /*---------------------------------------------------------------------------*/ static radio_result_t set_object(radio_param_t param, const void *src, size_t size) { rf_result_t res; if (!src) { return RADIO_RESULT_INVALID_VALUE; } switch (param) { /* 64-bit address */ case RADIO_PARAM_64BIT_ADDR: { const size_t destSize = sizeof(cmd_rx.localExtAddr); if (size != destSize) { return RADIO_RESULT_INVALID_VALUE; } const uint8_t *pSrc = (const uint8_t *)src; volatile uint8_t *pDest = (uint8_t *)&(cmd_rx.localExtAddr); for (size_t i = 0; i < destSize; ++i) { pDest[i] = pSrc[destSize - 1 - i]; } if (!rx_is_active()) { return RADIO_RESULT_OK; } netstack_stop_rx(); res = netstack_sched_rx(false); return (res == RF_RESULT_OK) ? RADIO_RESULT_OK : RADIO_RESULT_ERROR; } default: return RADIO_RESULT_NOT_SUPPORTED; } } /*---------------------------------------------------------------------------*/ /** * @} * @} */