/* * Copyright (c) 2015, SICS Swedish ICT. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. * */ /** * \file * TSCH adaptive time synchronization * \author * Atis Elsts * */ /** * \addtogroup tsch * @{ */ #include "net/mac/tsch/tsch.h" #include "net/mac/tsch/tsch-conf.h" #include "net/mac/tsch/tsch-adaptive-timesync.h" #include "net/mac/tsch/tsch-log.h" #include #if TSCH_ADAPTIVE_TIMESYNC /* Estimated drift of the time-source neighbor. Can be negative. * Units used: ppm multiplied by 256. */ static int32_t drift_ppm; /* Ticks compensated locally since the last timesync time */ static int32_t compensated_ticks; /* Number of already recorded timesync history entries */ static uint8_t timesync_entry_count; /* Since last learning of the drift; may be more than time since last timesync */ static uint32_t asn_since_last_learning; /* Units in which drift is stored: ppm * 256 */ #define TSCH_DRIFT_UNIT (1000L * 1000 * 256) /*---------------------------------------------------------------------------*/ long int tsch_adaptive_timesync_get_drift_ppm(void) { return (long int)drift_ppm / 256; } /*---------------------------------------------------------------------------*/ /* Add a value to a moving average estimator */ static int32_t timesync_entry_add(int32_t val) { #define NUM_TIMESYNC_ENTRIES 8 static int32_t buffer[NUM_TIMESYNC_ENTRIES]; static uint8_t pos; int i; if(timesync_entry_count == 0) { pos = 0; } buffer[pos] = val; if(timesync_entry_count < NUM_TIMESYNC_ENTRIES) { timesync_entry_count++; } else { /* We now have accurate drift compensation. * Increase keep-alive timeout. */ tsch_set_ka_timeout(TSCH_MAX_KEEPALIVE_TIMEOUT); } pos = (pos + 1) % NUM_TIMESYNC_ENTRIES; val = 0; for(i = 0; i < timesync_entry_count; ++i) { val += buffer[i]; } return val / timesync_entry_count; } /*---------------------------------------------------------------------------*/ /* Learn the neighbor drift rate at ppm */ static void timesync_learn_drift_ticks(uint32_t time_delta_asn, int32_t drift_ticks) { /* should fit in a 32-bit integer */ int32_t time_delta_ticks = time_delta_asn * tsch_timing[tsch_ts_timeslot_length]; int32_t real_drift_ticks = drift_ticks + compensated_ticks; int32_t last_drift_ppm = (int32_t)(((int64_t)real_drift_ticks * TSCH_DRIFT_UNIT) / time_delta_ticks); drift_ppm = timesync_entry_add(last_drift_ppm); TSCH_LOG_ADD(tsch_log_message, snprintf(log->message, sizeof(log->message), "drift %ld", tsch_adaptive_timesync_get_drift_ppm())); } /*---------------------------------------------------------------------------*/ /* Either reset or update the neighbor's drift */ void tsch_timesync_update(struct tsch_neighbor *n, uint16_t time_delta_asn, int32_t drift_correction) { /* Account the drift if either this is a new timesource, * or the timedelta is not too small, as smaller timedelta * means proportionally larger measurement error. */ if(last_timesource_neighbor != n) { last_timesource_neighbor = n; drift_ppm = 0; timesync_entry_count = 0; compensated_ticks = 0; asn_since_last_learning = 0; } else { asn_since_last_learning += time_delta_asn; if(asn_since_last_learning >= 4 * TSCH_SLOTS_PER_SECOND) { timesync_learn_drift_ticks(asn_since_last_learning, drift_correction); compensated_ticks = 0; asn_since_last_learning = 0; } else { /* Too small timedelta, do not recalculate the drift to avoid introducing error. instead account for the corrected ticks */ compensated_ticks += drift_correction; } } } /*---------------------------------------------------------------------------*/ /* Error-accumulation free compensation algorithm */ static int32_t compensate_internal(uint32_t time_delta_usec, int32_t drift_ppm, int32_t *remainder, int16_t *tick_conversion_error) { int64_t d = (int64_t)time_delta_usec * drift_ppm + *remainder; int32_t amount = d / TSCH_DRIFT_UNIT; int32_t amount_ticks; *remainder = (int32_t)(d - amount * TSCH_DRIFT_UNIT); amount += *tick_conversion_error; amount_ticks = US_TO_RTIMERTICKS(amount); *tick_conversion_error = amount - RTIMERTICKS_TO_US(amount_ticks); if(ABS(amount_ticks) > RTIMER_ARCH_SECOND / 128) { TSCH_LOG_ADD(tsch_log_message, snprintf(log->message, sizeof(log->message), "!too big compensation %ld delta %ld", (long int)amount_ticks, (long int)time_delta_usec)); amount_ticks = (amount_ticks > 0 ? RTIMER_ARCH_SECOND : -RTIMER_ARCH_SECOND) / 128; } return amount_ticks; } /*---------------------------------------------------------------------------*/ /* Do the compensation step before scheduling a new timeslot */ int32_t tsch_timesync_adaptive_compensate(rtimer_clock_t time_delta_ticks) { int32_t result = 0; uint32_t time_delta_usec = RTIMERTICKS_TO_US_64(time_delta_ticks); /* compensate, but not if the neighbor is not known */ if(drift_ppm && last_timesource_neighbor != NULL) { static int32_t remainder; static int16_t tick_conversion_error; result = compensate_internal(time_delta_usec, drift_ppm, &remainder, &tick_conversion_error); compensated_ticks += result; } if(TSCH_BASE_DRIFT_PPM) { static int32_t base_drift_remainder; static int16_t base_drift_tick_conversion_error; result += compensate_internal(time_delta_usec, 256L * TSCH_BASE_DRIFT_PPM, &base_drift_remainder, &base_drift_tick_conversion_error); } return result; } /*---------------------------------------------------------------------------*/ #else /* TSCH_ADAPTIVE_TIMESYNC */ /*---------------------------------------------------------------------------*/ void tsch_timesync_update(struct tsch_neighbor *n, uint16_t time_delta_asn, int32_t drift_correction) { } /*---------------------------------------------------------------------------*/ int32_t tsch_timesync_adaptive_compensate(rtimer_clock_t delta_ticks) { return 0; } /*---------------------------------------------------------------------------*/ #endif /* TSCH_ADAPTIVE_TIMESYNC */ /** @} */