/* * Copyright (c) 2015, Texas Instruments Incorporated - http://www.ti.com/ * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ /*---------------------------------------------------------------------------*/ /** * \addtogroup rf-core-prop * @{ * * \file * Implementation of the CC13xx prop mode NETSTACK_RADIO driver */ /*---------------------------------------------------------------------------*/ #include "contiki.h" #include "net/packetbuf.h" #include "net/netstack.h" #include "sys/energest.h" #include "sys/clock.h" #include "sys/rtimer.h" #include "sys/cc.h" #include "dev/watchdog.h" #include "proprietary-rf.h" #include "rf-core.h" #include "dot-15-4g.h" /*---------------------------------------------------------------------------*/ /* RF core and RF HAL API */ #include #include /*---------------------------------------------------------------------------*/ /* RF Core Mailbox API */ #include #include #include #include #include #include #include /*---------------------------------------------------------------------------*/ #include #include #include #include #include /*---------------------------------------------------------------------------*/ #define DEBUG 0 #if DEBUG #define PRINTF(...) printf(__VA_ARGS__) #else #define PRINTF(...) #endif /*---------------------------------------------------------------------------*/ /* Data entry status field constants */ #define DATA_ENTRY_STATUS_PENDING 0x00 /* Not in use by the Radio CPU */ #define DATA_ENTRY_STATUS_ACTIVE 0x01 /* Open for r/w by the radio CPU */ #define DATA_ENTRY_STATUS_BUSY 0x02 /* Ongoing r/w */ #define DATA_ENTRY_STATUS_FINISHED 0x03 /* Free to use and to free */ #define DATA_ENTRY_STATUS_UNFINISHED 0x04 /* Partial RX entry */ /*---------------------------------------------------------------------------*/ /* Data whitener. 1: Whitener, 0: No whitener */ #ifdef PROP_MODE_CONF_DW #define PROP_MODE_DW PROP_MODE_CONF_DW #else #define PROP_MODE_DW 0 #endif #ifdef PROP_MODE_CONF_USE_CRC16 #define PROP_MODE_USE_CRC16 PROP_MODE_CONF_USE_CRC16 #else #define PROP_MODE_USE_CRC16 0 #endif /*---------------------------------------------------------------------------*/ /** * \brief Returns the current status of a running Radio Op command * \param a A pointer with the buffer used to initiate the command * \return The value of the Radio Op buffer's status field * * This macro can be used to e.g. return the status of a previously * initiated background operation, or of an immediate command */ #define RF_RADIO_OP_GET_STATUS(a) GET_FIELD_V(a, radioOp, status) /*---------------------------------------------------------------------------*/ /* Special value returned by CMD_IEEE_CCA_REQ when an RSSI is not available */ #define RF_CMD_CCA_REQ_RSSI_UNKNOWN -128 /* Used for the return value of channel_clear */ #define RF_CCA_CLEAR 1 #define RF_CCA_BUSY 0 /* Used as an error return value for get_cca_info */ #define RF_GET_CCA_INFO_ERROR 0xFF /* * Values of the individual bits of the ccaInfo field in CMD_IEEE_CCA_REQ's * status struct */ #define RF_CMD_CCA_REQ_CCA_STATE_IDLE 0 /* 00 */ #define RF_CMD_CCA_REQ_CCA_STATE_BUSY 1 /* 01 */ #define RF_CMD_CCA_REQ_CCA_STATE_INVALID 2 /* 10 */ #ifdef PROP_MODE_CONF_RSSI_THRESHOLD #define PROP_MODE_RSSI_THRESHOLD PROP_MODE_CONF_RSSI_THRESHOLD #else #define PROP_MODE_RSSI_THRESHOLD 0xA6 #endif static int8_t rssi_threshold = PROP_MODE_RSSI_THRESHOLD; /*---------------------------------------------------------------------------*/ static int rf_switch_on(void); static int rf_switch_off(void); static rfc_propRxOutput_t rx_stats; /*---------------------------------------------------------------------------*/ /* Defines and variables related to the .15.4g PHY HDR */ #define DOT_4G_MAX_FRAME_LEN 2047 #define DOT_4G_PHR_LEN 2 /* PHY HDR bits */ #define DOT_4G_PHR_CRC16 0x10 #define DOT_4G_PHR_DW 0x08 #if PROP_MODE_USE_CRC16 /* CRC16 */ #define DOT_4G_PHR_CRC_BIT DOT_4G_PHR_CRC16 #define CRC_LEN 2 #else /* CRC32 */ #define DOT_4G_PHR_CRC_BIT 0 #define CRC_LEN 4 #endif #if PROP_MODE_DW #define DOT_4G_PHR_DW_BIT DOT_4G_PHR_DW #else #define DOT_4G_PHR_DW_BIT 0 #endif /*---------------------------------------------------------------------------*/ /* How long to wait for an ongoing ACK TX to finish before starting frame TX */ #define TX_WAIT_TIMEOUT (RTIMER_SECOND >> 11) /* How long to wait for the RF to enter RX in rf_cmd_ieee_rx */ #define ENTER_RX_WAIT_TIMEOUT (RTIMER_SECOND >> 10) /*---------------------------------------------------------------------------*/ /* TX power table for the 431-527MHz band */ #ifdef PROP_MODE_CONF_TX_POWER_431_527 #define PROP_MODE_TX_POWER_431_527 PROP_MODE_CONF_TX_POWER_431_527 #else #define PROP_MODE_TX_POWER_431_527 prop_mode_tx_power_431_527 #endif /*---------------------------------------------------------------------------*/ /* TX power table for the 779-930MHz band */ #ifdef PROP_MODE_CONF_TX_POWER_779_930 #define PROP_MODE_TX_POWER_779_930 PROP_MODE_CONF_TX_POWER_779_930 #else #define PROP_MODE_TX_POWER_779_930 prop_mode_tx_power_779_930 #endif /*---------------------------------------------------------------------------*/ /* Select power table based on the frequency band */ #if DOT_15_4G_FREQUENCY_BAND_ID==DOT_15_4G_FREQUENCY_BAND_470 #define TX_POWER_DRIVER PROP_MODE_TX_POWER_431_527 #else #define TX_POWER_DRIVER PROP_MODE_TX_POWER_779_930 #endif /*---------------------------------------------------------------------------*/ extern const prop_mode_tx_power_config_t TX_POWER_DRIVER[]; /* Max and Min Output Power in dBm */ #define OUTPUT_POWER_MAX (TX_POWER_DRIVER[0].dbm) #define OUTPUT_POWER_UNKNOWN 0xFFFF /* Default TX Power - position in output_power[] */ static const prop_mode_tx_power_config_t *tx_power_current = &TX_POWER_DRIVER[1]; /*---------------------------------------------------------------------------*/ #ifdef PROP_MODE_CONF_LO_DIVIDER #define PROP_MODE_LO_DIVIDER PROP_MODE_CONF_LO_DIVIDER #else #define PROP_MODE_LO_DIVIDER 0x05 #endif /*---------------------------------------------------------------------------*/ #ifdef PROP_MODE_CONF_RX_BUF_CNT #define PROP_MODE_RX_BUF_CNT PROP_MODE_CONF_RX_BUF_CNT #else #define PROP_MODE_RX_BUF_CNT 4 #endif /*---------------------------------------------------------------------------*/ #define DATA_ENTRY_LENSZ_NONE 0 #define DATA_ENTRY_LENSZ_BYTE 1 #define DATA_ENTRY_LENSZ_WORD 2 /* 2 bytes */ /* * RX buffers. * PROP_MODE_RX_BUF_CNT buffers of RX_BUF_SIZE bytes each. The start of each * buffer must be 4-byte aligned, therefore RX_BUF_SIZE must divide by 4 */ #define RX_BUF_SIZE 140 static uint8_t rx_buf[PROP_MODE_RX_BUF_CNT][RX_BUF_SIZE] CC_ALIGN(4); /* The RX Data Queue */ static dataQueue_t rx_data_queue = { 0 }; /* Receive entry pointer to keep track of read items */ volatile static uint8_t *rx_read_entry; /*---------------------------------------------------------------------------*/ /* The outgoing frame buffer */ #define TX_BUF_PAYLOAD_LEN 180 #define TX_BUF_HDR_LEN 2 static uint8_t tx_buf[TX_BUF_HDR_LEN + TX_BUF_PAYLOAD_LEN] CC_ALIGN(4); /*---------------------------------------------------------------------------*/ /* RF driver */ static RF_Object rfObject; static RF_Handle rfHandle; static RF_CmdHandle rxCmdHandle = RF_ALLOC_ERROR; /*---------------------------------------------------------------------------*/ PROCESS(rf_core_process, "CC13xx / CC26xx RF driver"); static uint8_t rf_transmitting(void) { return smartrf_settings_cmd_prop_tx_adv.status == ACTIVE; } /*---------------------------------------------------------------------------*/ static uint8_t rf_receiving(void) { return smartrf_settings_cmd_prop_rx_adv.status == ACTIVE; } /*---------------------------------------------------------------------------*/ static uint8_t rf_is_on(void) { return rf_receiving() | rf_transmitting(); } /*---------------------------------------------------------------------------*/ static void rf_rx_callback(RF_Handle client, RF_CmdHandle command, RF_EventMask events) { if (events & RF_EventRxEntryDone) { process_poll(&rf_core_process); } } /*---------------------------------------------------------------------------*/ static uint8_t rf_start_rx() { rtimer_clock_t t0; volatile rfc_CMD_PROP_RX_ADV_t *cmd_rx_adv; cmd_rx_adv = (rfc_CMD_PROP_RX_ADV_t *)&smartrf_settings_cmd_prop_rx_adv; cmd_rx_adv->status = IDLE; /* * Set the max Packet length. This is for the payload only, therefore * 2047 - length offset */ cmd_rx_adv->maxPktLen = DOT_4G_MAX_FRAME_LEN - cmd_rx_adv->lenOffset; rxCmdHandle = RF_postCmd(rfHandle, (RF_Op*)&smartrf_settings_cmd_prop_rx_adv, RF_PriorityNormal, &rf_rx_callback, RF_EventRxEntryDone); if (rxCmdHandle == RF_ALLOC_ERROR) { return RF_CORE_CMD_ERROR; } t0 = RTIMER_NOW(); while(cmd_rx_adv->status != ACTIVE && (RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ENTER_RX_WAIT_TIMEOUT))); /* Wait to enter RX */ if(cmd_rx_adv->status != ACTIVE) { PRINTF("rf_cmd_prop_rx: CMDSTA=0x%08lx, status=0x%04x\n", md_status, cmd_rx_adv->status); rf_switch_off(); return RF_CORE_CMD_ERROR; } return RF_CORE_CMD_OK; } /*---------------------------------------------------------------------------*/ static int rf_stop_rx(void) { int ret; /* If we are off, do nothing */ if(!rf_receiving()) { return RF_CORE_CMD_OK; } /* Abort any ongoing operation. Don't care about the result. */ RF_cancelCmd(rfHandle, RF_CMDHANDLE_FLUSH_ALL, 1); /* Todo: maybe do a RF_pendCmd() to synchronise with command execution. */ if(smartrf_settings_cmd_prop_rx_adv.status == PROP_DONE_STOPPED || smartrf_settings_cmd_prop_rx_adv.status == PROP_DONE_ABORT) { /* Stopped gracefully */ ENERGEST_OFF(ENERGEST_TYPE_LISTEN); ret = RF_CORE_CMD_OK; } else { PRINTF("rx_off_prop: status=0x%04x\n", smartrf_settings_cmd_prop_rx_adv.status); ret = RF_CORE_CMD_ERROR; } return ret; }/*---------------------------------------------------------------------------*/ static uint8_t rf_run_setup() { RF_runCmd(rfHandle, (RF_Op*)&smartrf_settings_cmd_prop_radio_div_setup, RF_PriorityNormal, NULL, 0); if (((volatile RF_Op*)&smartrf_settings_cmd_prop_radio_div_setup)->status != PROP_DONE_OK) { return RF_CORE_CMD_ERROR; } return RF_CORE_CMD_OK; } /*---------------------------------------------------------------------------*/ static radio_value_t get_rssi(void) { int8_t rssi = RF_GET_RSSI_ERROR_VAL; uint8_t was_off = 0; if (rf_transmitting()) { PRINTF("channel_clear: called while in TX\n"); return RF_CCA_CLEAR; } else if (!rf_receiving()) { was_off = 1; rf_start_rx(); } while(rssi == RF_GET_RSSI_ERROR_VAL || rssi == 0) { rssi = RF_getRssi(rfHandle); } if(was_off) { rf_switch_off(); } return rssi; } /*---------------------------------------------------------------------------*/ static uint8_t get_channel(void) { uint32_t freq_khz; freq_khz = smartrf_settings_cmd_prop_fs.frequency * 1000; /* * For some channels, fractFreq * 1000 / 65536 will return 324.99xx. * Casting the result to uint32_t will truncate decimals resulting in the * function returning channel - 1 instead of channel. Thus, we do a quick * positive integer round up. */ freq_khz += (((smartrf_settings_cmd_prop_fs.fractFreq * 1000) + 65535) / 65536); return (freq_khz - DOT_15_4G_CHAN0_FREQUENCY) / DOT_15_4G_CHANNEL_SPACING; } /*---------------------------------------------------------------------------*/ static void set_channel(uint8_t channel) { uint32_t new_freq; uint16_t freq, frac; new_freq = DOT_15_4G_CHAN0_FREQUENCY + (channel * DOT_15_4G_CHANNEL_SPACING); freq = (uint16_t)(new_freq / 1000); frac = (new_freq - (freq * 1000)) * 65536 / 1000; PRINTF("set_channel: %u = 0x%04x.0x%04x (%lu)\n", channel, freq, frac, new_freq); smartrf_settings_cmd_prop_radio_div_setup.centerFreq = freq; smartrf_settings_cmd_prop_fs.frequency = freq; smartrf_settings_cmd_prop_fs.fractFreq = frac; // Todo: Need to re-run setup command when deviation from previous frequency // is too large // rf_run_setup(); // We don't care whether the FS command is successful because subsequent // TX and RX commands will tell us indirectly. RF_postCmd(rfHandle, (RF_Op*)&smartrf_settings_cmd_prop_fs, RF_PriorityNormal, NULL, 0); } /*---------------------------------------------------------------------------*/ static uint8_t get_tx_power_array_last_element(void) { const prop_mode_tx_power_config_t *array = TX_POWER_DRIVER; uint8_t count = 0; while(array->tx_power != OUTPUT_POWER_UNKNOWN) { count++; array++; } return count - 1; } /*---------------------------------------------------------------------------*/ /* Returns the current TX power in dBm */ static radio_value_t get_tx_power(void) { return tx_power_current->dbm; } /*---------------------------------------------------------------------------*/ /* * The caller must make sure to send a new CMD_PROP_RADIO_DIV_SETUP to the * radio after calling this function. */ static void set_tx_power(radio_value_t power) { int i; for(i = get_tx_power_array_last_element(); i >= 0; --i) { if(power <= TX_POWER_DRIVER[i].dbm) { /* * Merely save the value. It will be used in all subsequent usages of * CMD_PROP_RADIO_DIV_SETP, including one immediately after this function * has returned */ tx_power_current = &TX_POWER_DRIVER[i]; return; } } } /*---------------------------------------------------------------------------*/ static void init_rx_buffers(void) { rfc_dataEntry_t *entry; int i; for(i = 0; i < PROP_MODE_RX_BUF_CNT; i++) { entry = (rfc_dataEntry_t *)rx_buf[i]; entry->status = DATA_ENTRY_STATUS_PENDING; entry->config.type = DATA_ENTRY_TYPE_GEN; entry->config.lenSz = DATA_ENTRY_LENSZ_WORD; entry->length = RX_BUF_SIZE - 8; entry->pNextEntry = rx_buf[i + 1]; } ((rfc_dataEntry_t *)rx_buf[PROP_MODE_RX_BUF_CNT - 1])->pNextEntry = rx_buf[0]; } /*---------------------------------------------------------------------------*/ static int prepare(const void *payload, unsigned short payload_len) { int len = MIN(payload_len, TX_BUF_PAYLOAD_LEN); memcpy(&tx_buf[TX_BUF_HDR_LEN], payload, len); return 0; } /*---------------------------------------------------------------------------*/ static int transmit(unsigned short transmit_len) { int ret; uint8_t was_off = 0; volatile rfc_CMD_PROP_TX_ADV_t *cmd_tx_adv; if (rf_transmitting()) { PRINTF("transmit: not allowed while transmitting\n"); return RADIO_TX_ERR; } else if (rf_receiving()) { rf_stop_rx(); } else { was_off = 1; } /* Length in .15.4g PHY HDR. Includes the CRC but not the HDR itself */ uint16_t total_length; /* * Prepare the .15.4g PHY header * MS=0, Length MSBits=0, DW and CRC configurable * Total length = transmit_len (payload) + CRC length * * The Radio will flip the bits around, so tx_buf[0] must have the length * LSBs (PHR[15:8] and tx_buf[1] will have PHR[7:0] */ total_length = transmit_len + CRC_LEN; tx_buf[0] = total_length & 0xFF; tx_buf[1] = (total_length >> 8) + DOT_4G_PHR_DW_BIT + DOT_4G_PHR_CRC_BIT; /* Prepare the CMD_PROP_TX_ADV command */ cmd_tx_adv = (rfc_CMD_PROP_TX_ADV_t *)&smartrf_settings_cmd_prop_tx_adv; /* * pktLen: Total number of bytes in the TX buffer, including the header if * one exists, but not including the CRC (which is not present in the buffer) */ cmd_tx_adv->pktLen = transmit_len + DOT_4G_PHR_LEN; cmd_tx_adv->pPkt = tx_buf; // TODO: Register callback RF_runCmd(rfHandle, (RF_Op*)cmd_tx_adv, RF_PriorityNormal, NULL, 0); // if (txHandle == RF_ALLOC_ERROR) // { // /* Failure sending the CMD_PROP_TX command */ // PRINTF("transmit: PROP_TX_ERR ret=%d, CMDSTA=0x%08lx, status=0x%04x\n", // ret, cmd_status, cmd_tx_adv->status); // return RADIO_TX_ERR; // } // // ENERGEST_ON(ENERGEST_TYPE_TRANSMIT); // // // watchdog_periodic(); // // /* Idle away while the command is running */ // RF_pendCmd(rfHandle, txHandle, RF_EventLastCmdDone); if(cmd_tx_adv->status == PROP_DONE_OK) { /* Sent OK */ ret = RADIO_TX_OK; } else { /* Operation completed, but frame was not sent */ PRINTF("transmit: Not Sent OK status=0x%04x\n", cmd_tx_adv->status); ret = RADIO_TX_ERR; } ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT); /* Workaround. Set status to IDLE */ cmd_tx_adv->status = IDLE; if (was_off) { RF_yield(rfHandle); } else { rf_start_rx(); } return ret; } /*---------------------------------------------------------------------------*/ static int send(const void *payload, unsigned short payload_len) { prepare(payload, payload_len); return transmit(payload_len); } /*---------------------------------------------------------------------------*/ static int read_frame(void *buf, unsigned short buf_len) { rfc_dataEntryGeneral_t *entry = (rfc_dataEntryGeneral_t *)rx_read_entry; uint8_t *data_ptr = &entry->data; int len = 0; if(entry->status == DATA_ENTRY_STATUS_FINISHED) { /* * First 2 bytes in the data entry are the length. * Our data entry consists of: Payload + RSSI (1 byte) + Status (1 byte) * This length includes all of those. */ len = (*(uint16_t *)data_ptr); data_ptr += 2; len -= 2; if(len > 0) { if(len <= buf_len) { memcpy(buf, data_ptr, len); } packetbuf_set_attr(PACKETBUF_ATTR_RSSI, (int8_t)data_ptr[len]); packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, 0x7F); } /* Move read entry pointer to next entry */ rx_read_entry = entry->pNextEntry; entry->status = DATA_ENTRY_STATUS_PENDING; } return len; } /*---------------------------------------------------------------------------*/ static int channel_clear(void) { uint8_t was_off = 0; int8_t rssi = RF_CMD_CCA_REQ_RSSI_UNKNOWN; // /* // * If we are in the middle of a BLE operation, we got called by ContikiMAC // * from within an interrupt context. Indicate a clear channel // */ // if(rf_ble_is_active() == RF_BLE_ACTIVE) { // return RF_CCA_CLEAR; // } if (rf_transmitting()) { PRINTF("channel_clear: called while in TX\n"); return RF_CCA_CLEAR; } else if (!rf_receiving()) { was_off = 1; rf_start_rx(); } while(rssi == RF_CMD_CCA_REQ_RSSI_UNKNOWN || rssi == 0) { rssi = RF_getRssi(rfHandle); } if(was_off) { rf_switch_off(); } if(rssi >= rssi_threshold) { return RF_CCA_BUSY; } return RF_CCA_CLEAR; } /*---------------------------------------------------------------------------*/ static int receiving_packet(void) { if(!rf_receiving()) { return 0; } if(channel_clear() == RF_CCA_CLEAR) { return 0; } return 1; } /*---------------------------------------------------------------------------*/ static int pending_packet(void) { int rv = 0; volatile rfc_dataEntry_t *entry = (rfc_dataEntry_t *)rx_data_queue.pCurrEntry; /* Go through all RX buffers and check their status */ do { if(entry->status == DATA_ENTRY_STATUS_FINISHED) { rv += 1; process_poll(&rf_core_process); } entry = (rfc_dataEntry_t *)entry->pNextEntry; } while(entry != (rfc_dataEntry_t *)rx_data_queue.pCurrEntry); /* If we didn't find an entry at status finished, no frames are pending */ return rv; } /*---------------------------------------------------------------------------*/ static int rf_switch_on(void) { init_rx_buffers(); return rf_start_rx(); } /*---------------------------------------------------------------------------*/ static int rf_switch_off(void) { // /* // * If we are in the middle of a BLE operation, we got called by ContikiMAC // * from within an interrupt context. Abort, but pretend everything is OK. // */ // if(rf_ble_is_active() == RF_BLE_ACTIVE) { // return RF_CORE_CMD_OK; // } // Force abort of any ongoing RF operation. RF_cancelCmd(rfHandle, RF_CMDHANDLE_FLUSH_ALL, 0); // Trigger a manual power-down RF_yield(rfHandle); /* We pulled the plug, so we need to restore the status manually */ smartrf_settings_cmd_prop_rx_adv.status = IDLE; return RF_CORE_CMD_OK; } /*---------------------------------------------------------------------------*/ static radio_result_t get_value(radio_param_t param, radio_value_t *value) { if(!value) { return RADIO_RESULT_INVALID_VALUE; } switch(param) { case RADIO_PARAM_POWER_MODE: /* On / off */ *value = rf_is_on() ? RADIO_POWER_MODE_ON : RADIO_POWER_MODE_OFF; return RADIO_RESULT_OK; case RADIO_PARAM_CHANNEL: *value = (radio_value_t)get_channel(); return RADIO_RESULT_OK; case RADIO_PARAM_TXPOWER: *value = get_tx_power(); return RADIO_RESULT_OK; case RADIO_PARAM_CCA_THRESHOLD: *value = rssi_threshold; return RADIO_RESULT_OK; case RADIO_PARAM_RSSI: *value = get_rssi(); if(*value == RF_CMD_CCA_REQ_RSSI_UNKNOWN) { return RADIO_RESULT_ERROR; } else { return RADIO_RESULT_OK; } case RADIO_CONST_CHANNEL_MIN: *value = 0; return RADIO_RESULT_OK; case RADIO_CONST_CHANNEL_MAX: *value = DOT_15_4G_CHANNEL_MAX; return RADIO_RESULT_OK; case RADIO_CONST_TXPOWER_MIN: *value = TX_POWER_DRIVER[get_tx_power_array_last_element()].dbm; return RADIO_RESULT_OK; case RADIO_CONST_TXPOWER_MAX: *value = OUTPUT_POWER_MAX; return RADIO_RESULT_OK; default: return RADIO_RESULT_NOT_SUPPORTED; } } /*---------------------------------------------------------------------------*/ static radio_result_t set_value(radio_param_t param, radio_value_t value) { switch(param) { case RADIO_PARAM_POWER_MODE: if(value == RADIO_POWER_MODE_ON) { // Powering on happens implicitly return RADIO_RESULT_OK; } if(value == RADIO_POWER_MODE_OFF) { rf_switch_off(); return RADIO_RESULT_OK; } return RADIO_RESULT_INVALID_VALUE; case RADIO_PARAM_CHANNEL: if(value < 0 || value > DOT_15_4G_CHANNEL_MAX) { return RADIO_RESULT_INVALID_VALUE; } if(get_channel() == (uint8_t)value) { /* We already have that very same channel configured. * Nothing to do here. */ return RADIO_RESULT_OK; } set_channel((uint8_t)value); break; case RADIO_PARAM_TXPOWER: if(value < TX_POWER_DRIVER[get_tx_power_array_last_element()].dbm || value > OUTPUT_POWER_MAX) { return RADIO_RESULT_INVALID_VALUE; } set_tx_power(value); return RADIO_RESULT_OK; case RADIO_PARAM_RX_MODE: return RADIO_RESULT_OK; case RADIO_PARAM_CCA_THRESHOLD: rssi_threshold = (int8_t)value; return RADIO_RESULT_OK; break; default: return RADIO_RESULT_NOT_SUPPORTED; } /* If we reach here we had no errors. Apply new settings */ if (rf_receiving()) { rf_stop_rx(); if (rf_run_setup() != RF_CORE_CMD_OK) { return RADIO_RESULT_ERROR; } rf_start_rx(); } else if (rf_transmitting()) { // Should not happen. TX is always synchronous and blocking. // Todo: maybe remove completely here. PRINTF("set_value: cannot apply new value while transmitting. \n"); return RADIO_RESULT_ERROR; } else { // was powered off. Nothing to do. New values will be // applied automatically on next power-up. } return RADIO_RESULT_OK; } /*---------------------------------------------------------------------------*/ static radio_result_t get_object(radio_param_t param, void *dest, size_t size) { return RADIO_RESULT_NOT_SUPPORTED; } /*---------------------------------------------------------------------------*/ static radio_result_t set_object(radio_param_t param, const void *src, size_t size) { return RADIO_RESULT_NOT_SUPPORTED; } /*---------------------------------------------------------------------------*/ static int rf_init(void) { RF_Params params; RF_Params_init(¶ms); params.nInactivityTimeout = 0; // disable automatic power-down // just to not interfere with stack timing rfHandle = RF_open(&rfObject, &RF_prop, (RF_RadioSetup*)&smartrf_settings_cmd_prop_radio_div_setup, ¶ms); assert(rfHandle != NULL); /* Initialise RX buffers */ memset(rx_buf, 0, sizeof(rx_buf)); /* Set of RF Core data queue. Circular buffer, no last entry */ rx_data_queue.pCurrEntry = rx_buf[0]; rx_data_queue.pLastEntry = NULL; /* Initialize current read pointer to first element (used in ISR) */ rx_read_entry = rx_buf[0]; smartrf_settings_cmd_prop_rx_adv.pQueue = &rx_data_queue; smartrf_settings_cmd_prop_rx_adv.pOutput = (uint8_t *)&rx_stats; set_channel(RF_CORE_CHANNEL); ENERGEST_ON(ENERGEST_TYPE_LISTEN); process_start(&rf_core_process, NULL); return 1; } /*---------------------------------------------------------------------------*/ PROCESS_THREAD(rf_core_process, ev, data) { int len; PROCESS_BEGIN(); while(1) { PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL); do { watchdog_periodic(); packetbuf_clear(); len = NETSTACK_RADIO.read(packetbuf_dataptr(), PACKETBUF_SIZE); if(len > 0) { packetbuf_set_datalen(len); NETSTACK_MAC.input(); } } while(len > 0); } PROCESS_END(); } /*---------------------------------------------------------------------------*/ const struct radio_driver prop_mode_driver = { rf_init, prepare, transmit, send, read_frame, channel_clear, receiving_packet, pending_packet, rf_switch_on, rf_switch_off, get_value, set_value, get_object, set_object, }; /*---------------------------------------------------------------------------*/ /** * @} */