/* * Copyright (c) 2010, Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file is part of the Contiki operating system. * * $Id: phase.c,v 1.14 2010/06/15 19:22:25 adamdunkels Exp $ */ /** * \file * Common functionality for phase optimization in duty cycling radio protocols * \author * Adam Dunkels */ #include "net/mac/phase.h" #include "net/packetbuf.h" #include "sys/clock.h" #include "lib/memb.h" #include "sys/ctimer.h" #include "net/queuebuf.h" #include "dev/watchdog.h" #include "dev/leds.h" struct phase_queueitem { struct ctimer timer; mac_callback_t mac_callback; void *mac_callback_ptr; struct queuebuf *q; }; #define PHASE_DEFER_THRESHOLD 1 #define PHASE_QUEUESIZE 8 #define MAX_NOACKS 3 MEMB(queued_packets_memb, struct phase_queueitem, PHASE_QUEUESIZE); #define DEBUG 0 #if DEBUG #include #define PRINTF(...) printf(__VA_ARGS__) #define PRINTDEBUG(...) printf(__VA_ARGS__) #else #define PRINTF(...) #define PRINTDEBUG(...) #endif /*---------------------------------------------------------------------------*/ struct phase * find_neighbor(const struct phase_list *list, const rimeaddr_t *addr) { struct phase *e; for(e = list_head(*list->list); e != NULL; e = list_item_next(e)) { if(rimeaddr_cmp(addr, &e->neighbor)) { return e; } } return NULL; } /*---------------------------------------------------------------------------*/ void phase_remove(const struct phase_list *list, const rimeaddr_t *neighbor) { struct phase *e; e = find_neighbor(list, neighbor); if(e != NULL) { list_remove(*list->list, e); memb_free(list->memb, e); } } /*---------------------------------------------------------------------------*/ void phase_update(const struct phase_list *list, const rimeaddr_t *neighbor, rtimer_clock_t time, int mac_status) { struct phase *e; /* If we have an entry for this neighbor already, we renew it. */ e = find_neighbor(list, neighbor); if(e != NULL) { if(mac_status == MAC_TX_OK) { e->time = time; } /* If the neighbor didn't reply to us, it may have switched phase (rebooted). We try a number of transmissions to it before we drop it from the phase list. */ if(mac_status == MAC_TX_NOACK) { PRINTF("phase noacks %d to %d.%d\n", e->noacks, neighbor->u8[0], neighbor->u8[1]); e->noacks++; if(e->noacks >= MAX_NOACKS) { list_remove(*list->list, e); memb_free(list->memb, e); return; } } else if(mac_status == MAC_TX_OK) { e->noacks = 0; } } else { /* No matching phase was found, so we allocate a new one. */ if(mac_status == MAC_TX_OK && e == NULL) { e = memb_alloc(list->memb); if(e == NULL) { PRINTF("phase alloc NULL\n"); /* We could not allocate memory for this phase, so we drop the last item on the list and reuse it for our phase. */ e = list_chop(*list->list); } rimeaddr_copy(&e->neighbor, neighbor); e->time = time; e->noacks = 0; list_push(*list->list, e); } } } /*---------------------------------------------------------------------------*/ static void send_packet(void *ptr) { struct phase_queueitem *p = ptr; queuebuf_to_packetbuf(p->q); queuebuf_free(p->q); memb_free(&queued_packets_memb, p); NETSTACK_RDC.send(p->mac_callback, p->mac_callback_ptr); } /*---------------------------------------------------------------------------*/ phase_status_t phase_wait(struct phase_list *list, const rimeaddr_t *neighbor, rtimer_clock_t cycle_time, rtimer_clock_t wait_before, mac_callback_t mac_callback, void *mac_callback_ptr) { struct phase *e; // const rimeaddr_t *neighbor = packetbuf_addr(PACKETBUF_ADDR_RECEIVER); /* We go through the list of phases to find if we have recorded a phase for this particular neighbor. If so, we can compute the time for the next expected phase and setup a ctimer to switch on the radio just before the phase. */ e = find_neighbor(list, neighbor); if(e != NULL) { rtimer_clock_t wait, now, expected, additional_wait; clock_time_t ctimewait; /* We expect phases to happen every CYCLE_TIME time units. The next expected phase is at time e->time + CYCLE_TIME. To compute a relative offset, we subtract with clock_time(). Because we are only interested in turning on the radio within the CYCLE_TIME period, we compute the waiting time with modulo CYCLE_TIME. */ /* printf("neighbor phase 0x%02x (cycle 0x%02x)\n", e->time & (cycle_time - 1), cycle_time);*/ additional_wait = 2 * e->noacks * wait_before; /* if(e->noacks > 0) { printf("additional wait %d\n", additional_wait); }*/ now = RTIMER_NOW(); wait = (rtimer_clock_t)((e->time - now) & (cycle_time - 1)); if(wait < wait_before + additional_wait) { wait += cycle_time; } ctimewait = (CLOCK_SECOND * (wait - wait_before - additional_wait)) / RTIMER_ARCH_SECOND; if(ctimewait > PHASE_DEFER_THRESHOLD) { struct phase_queueitem *p; p = memb_alloc(&queued_packets_memb); if(p != NULL) { p->q = queuebuf_new_from_packetbuf(); if(p->q != NULL) { p->mac_callback = mac_callback; p->mac_callback_ptr = mac_callback_ptr; ctimer_set(&p->timer, ctimewait, send_packet, p); return PHASE_DEFERRED; } else { memb_free(&queued_packets_memb, p); } } } expected = now + wait - wait_before - additional_wait; if(!RTIMER_CLOCK_LT(expected, now)) { /* Wait until the receiver is expected to be awake */ while(RTIMER_CLOCK_LT(RTIMER_NOW(), expected)) { } } return PHASE_SEND_NOW; } return PHASE_UNKNOWN; } /*---------------------------------------------------------------------------*/ void phase_init(struct phase_list *list) { list_init(*list->list); memb_init(list->memb); memb_init(&queued_packets_memb); } /*---------------------------------------------------------------------------*/