iot-wsn/simulation/pretty.py

64 lines
1.8 KiB
Python
Raw Normal View History

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import csv
import os
import re
import statistics
### PARAMETERS ###
RESULTSDIR='results/'
### FUNCTIONS ###
def compute_confidence_interval(samples): # 95%
stdev = statistics.stdev(samples)
ci = 1.96 * stdev / np.sqrt(len(samples))
return ci
### GLOBAL VARIABLES ###
all_route_discovery = dict()
### MAIN ###
for filename in os.listdir(RESULTSDIR):
df = pd.read_csv(RESULTSDIR + '/' + filename,
delimiter='\s|\t',
index_col=0,
nrows=4,
engine='python',
header=None).T
kappa = int(df['KAPPA'].to_string().split()[1])
i_min = int(df['I_MIN'].to_string().split()[1])
2019-12-15 09:58:32 +00:00
key = str(kappa) + ':' + str(i_min)
if (not key in all_route_discovery):
2019-12-15 09:58:32 +00:00
all_route_discovery[key] = { 'samples': [], 'k': kappa, 'i_min': i_min, 'count': 0 }
all_route_discovery[key]['count'] += 1
with open(RESULTSDIR + '/' + filename) as file:
for line in file:
if (re.match('ALL-ROUTE-DISCOVERY', line)):
t = int(line.split()[1]) / (10**6)
all_route_discovery[key]['samples'].append(t)
break
# now, for every k, i_min, i_max
# all_route_discovery contains an array with all samples of the measured value
2019-12-15 09:58:32 +00:00
print('k i_min count mean ci')
for simulation in all_route_discovery:
all_route_discovery[simulation]['mean'] = np.mean(all_route_discovery[simulation]['samples'])
all_route_discovery[simulation]['ci'] = compute_confidence_interval(all_route_discovery[simulation]['samples'])
print(
all_route_discovery[simulation]['k'],
all_route_discovery[simulation]['i_min'],
2019-12-15 09:58:32 +00:00
all_route_discovery[simulation]['count'],
all_route_discovery[simulation]['mean'],
all_route_discovery[simulation]['ci']
)
exit(0)