nes-proj/Communication.c

444 lines
14 KiB
C
Raw Normal View History

/***************************************************************************//**
* @file Communication.c
* @brief Implementation of the Communication Driver for RL78G14 processor.
* @author DBogdan (dragos.bogdan@analog.com)
********************************************************************************
* Copyright 2012(c) Analog Devices, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Analog Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* - The use of this software may or may not infringe the patent rights
* of one or more patent holders. This license does not release you
* from the requirement that you obtain separate licenses from these
* patent holders to use this software.
* - Use of the software either in source or binary form, must be run
* on or directly connected to an Analog Devices Inc. component.
*
* THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
********************************************************************************
* SVN Revision: $WCREV$
*******************************************************************************/
/******************************************************************************/
/***************************** Include Files **********************************/
/******************************************************************************/
#include "Communication.h" // Communication definitions
#include "RDKRL78G14.h" // RDKRL78G14 definitions
char IICA0_Flag;
/******************************************************************************/
/************************ Functions Definitions *******************************/
/******************************************************************************/
/***************************************************************************//**
* @brief I2C interrupt service routine.
*
* @return None.
*******************************************************************************/
#pragma vector = INTIICA0_vect
__interrupt static void IICA0_Interrupt(void)
{
IICA0_Flag = 1;
}
/***************************************************************************//**
* @brief Initializes the SPI communication peripheral.
*
2013-05-23 13:12:03 +00:00
* @param lsbFirst - Transfer format (0 or 1).
* Example: 0x0 - MSB first.
* 0x1 - LSB first.
* @param clockFreq - SPI clock frequency (Hz).
* Example: 1000 - SPI clock frequency is 1 kHz.
2013-05-23 13:12:03 +00:00
* @param clockPol - SPI clock polarity (0 or 1).
* Example: 0x0 - Idle state for clock is a low level; active
* state is a high level;
* 0x1 - Idle state for clock is a high level; active
* state is a low level.
* @param clockEdg - SPI clock edge (0 or 1).
* Example: 0x0 - Serial output data changes on transition
* from idle clock state to active clock state;
* 0x1 - Serial output data changes on transition
* from active clock state to idle clock state.
*
2013-05-23 13:12:03 +00:00
* @return status - Result of the initialization procedure.
* Example: 0 - if initialization was successful;
* -1 - if initialization was unsuccessful.
*******************************************************************************/
char SPI_Init(char lsbFirst,
long clockFreq,
char clockPol,
char clockEdg)
{
long mckFreq = 32000000;
char sdrValue = 0;
2013-05-23 13:12:03 +00:00
char delay = 0;
/* Configure the CS pins. */
PMOD1_CS_OUT;
PMOD1_CS_HIGH;
PMOD2_CS_OUT;
PMOD2_CS_HIGH;
ST7579_CS_OUT;
ST7579_CS_HIGH;
/* Enable input clock supply. */
SAU1EN = 1;
/* After setting the SAUmEN bit to 1, be sure to set serial clock select
register m (SPSm) after 4 or more fCLK clocks have elapsed. */
NOP;
NOP;
NOP;
NOP;
/* Select the fCLK as input clock. */
SPS1 = 0x0000;
/* Select the CSI operation mode. */
SMR11 = 0x0020;
clockPol = 1 - clockPol;
2013-05-23 13:12:03 +00:00
SCR11 = (clockEdg << 13) |
(clockPol << 12) |
0xC000 | // Operation mode: Transmission/reception.
0x0007; // 8-bit data length.
/* clockFreq = mckFreq / (sdrValue * 2 + 2) */
sdrValue = mckFreq / (2 * clockFreq) - 1;
2013-05-23 13:12:03 +00:00
SDR11 = sdrValue << 9;
/* Set the clock and data initial level. */
clockPol = 1 - clockPol;
2013-05-23 13:12:03 +00:00
SO1 &= ~0x0202;
SO1 |= (clockPol << 9) |
(clockPol << 1);
/* Enable output for serial communication operation. */
SOE1 |= 0x0002;
2013-05-23 13:12:03 +00:00
/* Configure the MISO pin as input. */
PM7 |= 0x02;
/* Configure SCLK and MOSI pins as output. */
2013-05-23 13:12:03 +00:00
P7 |= 0x05;
PM7 &= ~0x05;
2013-05-23 13:12:03 +00:00
/* Wait for the changes to take place. */
for(delay = 0; delay < 50; delay++)
{
NOP;
}
/* Set the SEmn bit to 1 and enter the communication wait status */
SS1 |= 0x0002;
2013-05-23 13:12:03 +00:00
return 0;
}
/***************************************************************************//**
* @brief Writes data to SPI.
*
* @param slaveDeviceId - The ID of the selected slave device.
2013-05-23 13:12:03 +00:00
* @param data - Data represents the write buffer.
* @param bytesNumber - Number of bytes to write.
*
* @return Number of written bytes.
*******************************************************************************/
char SPI_Write(char slaveDeviceId,
unsigned char* data,
char bytesNumber)
{
2013-05-23 13:12:03 +00:00
char byte = 0;
unsigned char read = 0;
unsigned short originalSCR = 0;
unsigned short originalSO1 = 0;
if(slaveDeviceId == 1)
{
PMOD1_CS_LOW;
}
if(slaveDeviceId == 2)
{
PMOD2_CS_LOW;
}
if(slaveDeviceId == 3)
{
2013-05-23 13:12:03 +00:00
ST1 |= 0x0002;
originalSO1 = SO1;
originalSCR = SCR11;
SO1 &= ~0x0202;
SCR11 &= ~0x3000;
SS1 |= 0x0002;
ST7579_CS_LOW;
}
for(byte = 0; byte < bytesNumber; byte++)
{
SIO21 = data[byte];
NOP;
while(SSR11 & 0x0040);
read = SIO21;
}
if(slaveDeviceId == 1)
{
PMOD1_CS_HIGH;
}
if(slaveDeviceId == 2)
{
PMOD2_CS_HIGH;
}
if(slaveDeviceId == 3)
{
ST7579_CS_HIGH;
2013-05-23 13:12:03 +00:00
ST1 |= 0x0002;
SO1 = originalSO1;
SCR11 = originalSCR;
SS1 |= 0x0002;
}
return bytesNumber;
}
/***************************************************************************//**
* @brief Reads data from SPI.
*
* @param slaveDeviceId - The ID of the selected slave device.
2013-05-23 13:12:03 +00:00
* @param data - Data represents the write buffer as an input parameter
* and the read buffer as an output parameter.
* @param bytesNumber - Number of bytes to read.
*
* @return Number of read bytes.
*******************************************************************************/
char SPI_Read(char slaveDeviceId,
unsigned char* data,
char bytesNumber)
{
2013-05-23 13:12:03 +00:00
char byte = 0;
unsigned short originalSCR = 0;
unsigned short originalSO1 = 0;
if(slaveDeviceId == 1)
{
PMOD1_CS_LOW;
}
if(slaveDeviceId == 2)
{
PMOD2_CS_LOW;
}
if(slaveDeviceId == 3)
{
2013-05-23 13:12:03 +00:00
ST1 |= 0x0002;
originalSO1 = SO1;
originalSCR = SCR11;
SO1 &= ~0x0202;
SCR11 &= ~0x3000;
SS1 |= 0x0002;
ST7579_CS_LOW;
}
for(byte = 0; byte < bytesNumber; byte++)
{
SIO21 = data[byte];
NOP;
while(SSR11 & 0x0040);
data[byte] = SIO21;
}
if(slaveDeviceId == 1)
{
PMOD1_CS_HIGH;
}
if(slaveDeviceId == 2)
{
PMOD2_CS_HIGH;
}
if(slaveDeviceId == 3)
{
ST7579_CS_HIGH;
2013-05-23 13:12:03 +00:00
ST1 |= 0x0002;
SO1 = originalSO1;
SCR11 = originalSCR;
SS1 |= 0x0002;
}
return bytesNumber;
}
/***************************************************************************//**
* @brief Initializes the I2C communication peripheral.
*
* @param clockFreq - I2C clock frequency (Hz).
* Example: 100000 - SPI clock frequency is 100 kHz.
2013-05-23 13:12:03 +00:00
* @return status - Result of the initialization procedure.
* Example: 0 - if initialization was successful;
* -1 - if initialization was unsuccessful.
*******************************************************************************/
char I2C_Init(long clockFreq)
{
long fckFreq = 32000000;
unsigned char wlValue = 0;
unsigned char whValue = 0;
/* Enable interrupts */
EI;
/* Enable input clock supply. */
IICA0EN = 1;
/* Set the fast mode plus operation. */
SMC0 = 1;
/* Set transfer rate. */
wlValue = (unsigned char)((0.5 * fckFreq) / clockFreq);
whValue = (unsigned char)(wlValue - (fckFreq / (10 * clockFreq)));
2013-05-23 13:12:03 +00:00
IICWL0 = wlValue;
IICWH0 = whValue;
2013-05-23 13:12:03 +00:00
STCEN0 = 1; // After operation is enabled, enable generation of a start
// condition without detecting a stop condition.
WTIM0 = 1; // Interrupt request is generated at the ninth clocks
// falling edge.
/* Enable I2C operation. */
IICE0 = 1;
/* Configure SCLA0 and SDAA0 pins as digital output. */
P6 &= ~0x03;
PM6 &= ~0x03;
2013-05-23 13:12:03 +00:00
return 0;
}
/***************************************************************************//**
* @brief Writes data to a slave device.
*
* @param slaveAddress - Adress of the slave device.
2013-05-23 13:12:03 +00:00
* @param dataBuffer - Pointer to a buffer storing the transmission data.
* @param bytesNumber - Number of bytes to write.
* @param stopBit - Stop condition control.
* Example: 0 - A stop condition will not be sent;
* 1 - A stop condition will be sent.
*
2013-05-23 13:12:03 +00:00
* @return status - Number of read bytes or 0xFF if the slave address was
* not acknowledged by the device.
*******************************************************************************/
char I2C_Write(char slaveAddress,
unsigned char* dataBuffer,
char bytesNumber,
char stopBit)
{
char byte = 0;
char status = 0;
2013-05-23 13:12:03 +00:00
IICAMK0 = 1; // Interrupt servicing disabled.
STT0 = 1; // Generate a start condition.
IICAMK0 = 0; // Interrupt servicing enabled.
/* Send the first byte. */
IICA0_Flag = 0;
2013-05-23 13:12:03 +00:00
IICA0 = (slaveAddress << 1);
while(IICA0_Flag == 0);
if(ACKD0) // Acknowledge was detected.
{
for(byte = 0; byte < bytesNumber; byte++)
{
IICA0_Flag = 0;
2013-05-23 13:12:03 +00:00
IICA0 = *dataBuffer;
while(IICA0_Flag == 0);
dataBuffer++;
}
status = bytesNumber;
}
else // Acknowledge was not detected.
{
status = 0xFF;
}
if(stopBit)
{
SPT0 = 1; // Generate a stop condition.
while(IICBSY0); // Wait until the I2C bus status flag is cleared.
}
return status;
}
/***************************************************************************//**
* @brief Reads data from a slave device.
*
* @param slaveAddress - Adress of the slave device.
2013-05-23 13:12:03 +00:00
* @param dataBuffer - Pointer to a buffer that will store the received data.
* @param bytesNumber - Number of bytes to read.
* @param stopBit - Stop condition control.
* Example: 0 - A stop condition will not be sent;
* 1 - A stop condition will be sent.
*
2013-05-23 13:12:03 +00:00
* @return status - Number of read bytes or 0xFF if the slave address was
* not acknowledged by the device.
*******************************************************************************/
char I2C_Read(char slaveAddress,
unsigned char* dataBuffer,
char bytesNumber,
char stopBit)
{
char byte = 0;
char status = 0;
IICAMK0 = 1; // Interrupt servicing disabled.
2013-05-23 13:12:03 +00:00
STT0 = 1; // Generate a start condition.
IICAMK0 = 0; // Interrupt servicing enabled.
/* Send the first byte. */
IICA0_Flag = 0;
2013-05-23 13:12:03 +00:00
IICA0 = (slaveAddress << 1) + 1;
while(IICA0_Flag == 0);
if(ACKD0) // Acknowledge was detected.
{
ACKE0 = 1; // Enable acknowledgment.
for(byte = 0; byte < bytesNumber; byte++)
{
if(byte == (bytesNumber - 1))
{
2013-05-23 13:12:03 +00:00
ACKE0 = 0U; // Disable acknowledgment.
}
2013-05-23 13:12:03 +00:00
WREL0 = 1U; // Cancel wait.
IICA0_Flag = 0;
while(IICA0_Flag == 0);
*dataBuffer = IICA0;
dataBuffer++;
}
status = bytesNumber;
}
2013-05-23 13:12:03 +00:00
else // Acknowledge was not detected.
{
2013-05-23 13:12:03 +00:00
status = 0xFF;
}
if(stopBit)
{
2013-05-23 13:12:03 +00:00
SPT0 = 1; // Generate a stop condition.
while(IICBSY0); // Wait until the I2C bus status flag is cleared.
}
return status;
}