nes-proj/cpu/cc2538/dev/bignum-driver.c

1065 lines
30 KiB
C
Raw Normal View History

/*
* Original file:
* Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Port to Contiki:
* Authors: Andreas Dröscher <contiki@anticat.ch>
* Hu Luo
* Hossein Shafagh <shafagh@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \addtogroup cc2538-bignum
* @{
*
* \file
* Implementation of the cc2538 BigNum driver
*
* bignum_subtract_start bignum_subtract_get_result (subtraction)
* bignum_add_start bignum_add_get_result (addition)
* bignum_mod_start bignum_mod_get_result (modulo)
* bignum_exp_mod_start bignum_exp_mod_get_result (modular exponentiation operation)
* bignum_inv_mod_start bignum_inv_mod_get_result (inverse modulo operation)
* bignum_mul_start bignum_mul_get_result (multiplication)
* bignum_divide_start bignum_divide_get_result (division)
* bignum_cmp_start bignum_cmp_get_result (comparison)
*/
#include "dev/bignum-driver.h"
#include <stdio.h>
#include "reg.h"
#include "dev/nvic.h"
#define ASSERT(IF) if(!(IF)) { return PKA_STATUS_INVALID_PARAM; }
/*---------------------------------------------------------------------------*/
uint8_t
bignum_mod_start(const uint32_t *number,
const uint8_t number_size,
const uint32_t *modulus,
const uint8_t modulus_size,
uint32_t *result_vector,
struct process *process)
{
uint8_t extraBuf;
uint32_t offset;
int i;
/* Check the arguments. */
ASSERT(NULL != number);
ASSERT(NULL != modulus);
ASSERT(NULL != result_vector);
/* make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* calculate the extra buffer requirement. */
extraBuf = 2 + modulus_size % 2;
offset = 0;
/* Update the A ptr with the offset address of the PKA RAM location
* where the number will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the number in PKA RAM */
for(i = 0; i < number_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number[i];
}
/* determine the offset for the next data input. */
offset += 4 * (i + number_size % 2);
/* Update the B ptr with the offset address of the PKA RAM location
* where the divisor will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the divisor in PKA RAM. */
for(i = 0; i < modulus_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = modulus[i];
}
/* determine the offset for the next data. */
offset += 4 * (i + extraBuf);
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load C ptr with the result location in PKA RAM */
REG(PKA_CPTR) = offset >> 2;
/* Load A length registers with Big number length in 32 bit words. */
REG(PKA_ALENGTH) = number_size;
/* Load B length registers Divisor length in 32-bit words. */
REG(PKA_BLENGTH) = modulus_size;
/* Start the PKCP modulo operation by setting the PKA Function register. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_MODULO);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_mod_get_result(uint32_t *buffer,
const uint8_t buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check the arguments. */
ASSERT(NULL != buffer);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_DIVMSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_DIVMSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result. */
len = ((regMSWVal & PKA_DIVMSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* If the size of the buffer provided is less than the result length than
* return error. */
if(buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* copy the result from vector C into the pResult. */
for(i = 0; i < len; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_cmp_start(const uint32_t *number1,
const uint32_t *number2,
const uint8_t size,
struct process *process)
{
uint32_t offset;
int i;
/* Check the arguments. */
ASSERT(NULL != number1);
ASSERT(NULL != number2);
offset = 0;
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the first big number will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the first big number in PKA RAM. */
for(i = 0; i < size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number1[i];
}
/* Determine the offset in PKA RAM for the next pointer. */
offset += 4 * (i + size % 2);
/* Update the B ptr with the offset address of the PKA RAM location
* where the second big number will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the second big number in PKA RAM. */
for(i = 0; i < size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number2[i];
}
/* Load length registers in 32 bit word size. */
REG(PKA_ALENGTH) = size;
/* Set the PKA Function register for the compare operation
* and start the operation. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_COMPARE);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_cmp_get_result(void)
{
uint8_t status;
/* verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
status = PKA_STATUS_OPERATION_INPRG;
return status;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Check the compare register. */
switch(REG(PKA_COMPARE)) {
case PKA_COMPARE_A_EQUALS_B:
status = PKA_STATUS_SUCCESS;
break;
case PKA_COMPARE_A_GREATER_THAN_B:
status = PKA_STATUS_A_GR_B;
break;
case PKA_COMPARE_A_LESS_THAN_B:
status = PKA_STATUS_A_LT_B;
break;
default:
status = PKA_STATUS_FAILURE;
break;
}
return status;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_inv_mod_start(const uint32_t *number,
const uint8_t number_size,
const uint32_t *modulus,
const uint8_t modulus_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
int i;
/* Check the arguments. */
ASSERT(NULL != number);
ASSERT(NULL != modulus);
ASSERT(NULL != result_vector);
offset = 0;
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the number will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the \e number number in PKA RAM. */
for(i = 0; i < number_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number[i];
}
/* Determine the offset for next data. */
offset += 4 * (i + number_size % 2);
/* Update the B ptr with the offset address of the PKA RAM location
* where the modulus will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the \e modulus divisor in PKA RAM. */
for(i = 0; i < modulus_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = modulus[i];
}
/* Determine the offset for result data. */
offset += 4 * (i + modulus_size % 2);
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load D ptr with the result location in PKA RAM. */
REG(PKA_DPTR) = offset >> 2;
/* Load the respective length registers. */
REG(PKA_ALENGTH) = number_size;
REG(PKA_BLENGTH) = modulus_size;
/* set the PKA function to InvMod operation and the start the operation. */
REG(PKA_FUNCTION) = 0x0000F000;
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_inv_mod_get_result(uint32_t *buffer,
const uint8_t buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check the arguments. */
ASSERT(NULL != buffer);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* Verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* Check if the provided buffer length is adequate to store the result
* data. */
if(buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* Copy the result from vector C into the \e buffer. */
for(i = 0; i < len; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_mul_start(const uint32_t *multiplicand,
const uint8_t multiplicand_size,
const uint32_t *multiplier,
const uint8_t multiplier_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
int i;
/* Check for the arguments. */
ASSERT(NULL != multiplicand);
ASSERT(NULL != multiplier);
ASSERT(NULL != result_vector);
offset = 0;
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the multiplicand will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the multiplicand in PKA RAM. */
for(i = 0; i < multiplicand_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = *multiplicand;
multiplicand++;
}
/* Determine the offset for the next data. */
offset += 4 * (i + (multiplicand_size % 2));
/* Update the B ptr with the offset address of the PKA RAM location
* where the multiplier will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the multiplier in PKA RAM. */
for(i = 0; i < multiplier_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = *multiplier;
multiplier++;
}
/* Determine the offset for the next data. */
offset += 4 * (i + (multiplier_size % 2));
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load C ptr with the result location in PKA RAM. */
REG(PKA_CPTR) = offset >> 2;
/* Load the respective length registers. */
REG(PKA_ALENGTH) = multiplicand_size;
REG(PKA_BLENGTH) = multiplier_size;
/* Set the PKA function to the multiplication and start it. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_MULTIPLY);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_mul_get_result(uint32_t *buffer,
uint32_t *buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check for arguments. */
ASSERT(NULL != buffer);
ASSERT(NULL != buffer_size);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* Verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result. */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* Make sure that the length of the supplied result buffer is adequate
* to store the resultant. */
if(*buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* Copy the resultant length. */
*buffer_size = len;
/* Copy the result from vector C into the pResult. */
for(i = 0; i < *buffer_size; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_add_start(const uint32_t *number1,
const uint8_t number1_size,
const uint32_t *number2,
const uint8_t number2_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
int i;
/* Check for arguments. */
ASSERT(NULL != number1);
ASSERT(NULL != number2);
ASSERT(NULL != result_vector);
offset = 0;
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the big number 1 will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the big number 1 in PKA RAM. */
for(i = 0; i < number1_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number1[i];
}
/* Determine the offset in PKA RAM for the next data. */
offset += 4 * (i + (number1_size % 2));
/* Update the B ptr with the offset address of the PKA RAM location
* where the big number 2 will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the big number 2 in PKA RAM. */
for(i = 0; i < number2_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number2[i];
}
/* Determine the offset in PKA RAM for the next data. */
offset += 4 * (i + (number2_size % 2));
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load C ptr with the result location in PKA RAM. */
REG(PKA_CPTR) = offset >> 2;
/* Load respective length registers. */
REG(PKA_ALENGTH) = number1_size;
REG(PKA_BLENGTH) = number2_size;
/* Set the function for the add operation and start the operation. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_ADD);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_add_get_result(uint32_t *buffer,
uint32_t *buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check for the arguments. */
ASSERT(NULL != buffer);
ASSERT(NULL != buffer_size);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* Verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result. */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* Make sure that the supplied result buffer is adequate to store the
* resultant data. */
if(*buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* Copy the length. */
*buffer_size = len;
/* Copy the result from vector C into the provided buffer. */
for(i = 0; i < *buffer_size; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
/* below functions are added by hu luo */
uint8_t
bignum_subtract_start(const uint32_t *number1,
const uint8_t number1_size,
const uint32_t *number2,
const uint8_t number2_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
int i;
/* Check for arguments. */
ASSERT(NULL != number1);
ASSERT(NULL != number2);
ASSERT(NULL != result_vector);
offset = 0;
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the big number 1 will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the big number 1 in PKA RAM. */
for(i = 0; i < number1_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number1[i];
}
/* Determine the offset in PKA RAM for the next data. */
offset += 4 * (i + (number1_size % 2));
/* Update the B ptr with the offset address of the PKA RAM location
* where the big number 2 will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the big number 2 in PKA RAM. */
for(i = 0; i < number2_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number2[i];
}
/* Determine the offset in PKA RAM for the next data. */
offset += 4 * (i + (number2_size % 2));
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load C ptr with the result location in PKA RAM. */
REG(PKA_CPTR) = offset >> 2;
/* Load respective length registers. */
REG(PKA_ALENGTH) = number1_size;
REG(PKA_BLENGTH) = number2_size;
/* Set the function for the add operation and start the operation. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_SUBTRACT);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_subtract_get_result(uint32_t *buffer,
uint32_t *buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check for the arguments. */
ASSERT(NULL != buffer);
ASSERT(NULL != buffer_size);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* Verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result. */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* Make sure that the supplied result buffer is adequate to store the
* resultant data. */
if(*buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* Copy the length. */
*buffer_size = len;
/* Copy the result from vector C into the provided buffer. */
for(i = 0; i < *buffer_size; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_exp_mod_start(const uint32_t *number,
const uint8_t number_size,
const uint32_t *modulus,
const uint8_t modulus_size,
const uint32_t *base,
const uint8_t base_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
int i;
/* Check for the arguments. */
ASSERT(NULL != number);
ASSERT(NULL != modulus);
ASSERT(NULL != base);
ASSERT(NULL != result_vector);
ASSERT(modulus != base);
offset = 0;
/* Make sure no PKA operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the exponent will be stored. */
REG(PKA_APTR) = offset >> 2;
/* Load the Exponent in PKA RAM. */
for(i = 0; i < number_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = number[i];
}
/* Determine the offset for the next data(BPTR). */
offset += 4 * (i + number_size % 2);
/* Update the B ptr with the offset address of the PKA RAM location
* where the divisor will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the Modulus in PKA RAM. */
for(i = 0; i < modulus_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = modulus[i];
}
/* Determine the offset for the next data(CPTR). */
offset += 4 * (i + modulus_size % 2 + 2);
/* Update the C ptr with the offset address of the PKA RAM location
* where the Base will be stored. */
REG(PKA_CPTR) = offset >> 2;
/* Write Base to the Vector C in PKA RAM */
for(i = 0; i < base_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = base[i];
}
/* Determine the offset for the next data.
* INFO D and B can share the same memory area!
* offset += 4 * (i + extraBuf + 2); */
/* Copy the result vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load D ptr with the result location in PKA RAM */
REG(PKA_DPTR) = offset >> 2;
/* Load A length registers with Big number length in 32 bit words. */
REG(PKA_ALENGTH) = number_size;
/* Load B length registers Divisor length in 32-bit words. */
REG(PKA_BLENGTH) = modulus_size;
/* REG(PKA_SHIFT) = 0x00000001;
* Required for (EXPMod-variable): 0x0000A000
* Start the PKCP modulo exponentiation operation(EXPMod-ACT2)
* by setting the PKA Function register. */
REG(PKA_FUNCTION) = 0x0000C000;
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_exp_mod_get_result(uint32_t *buffer,
const uint8_t buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check the arguments. */
ASSERT(NULL != buffer);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* If the size of the buffer provided is less than the result length than
* return error. */
if(buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* copy the result from vector C into the pResult. */
for(i = 0; i < len; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_divide_start(const uint32_t *dividend,
const uint8_t dividend_size,
const uint32_t *divisor,
const uint8_t divisor_size,
uint32_t *result_vector,
struct process *process)
{
uint32_t offset;
uint32_t spacing;
int i;
/* We use largest len for spacing */
if(dividend_size > divisor_size) {
spacing = dividend_size;
} else {
spacing = divisor_size;
}
spacing += 2 + spacing % 2;
/* Check for the arguments. */
ASSERT(NULL != dividend);
ASSERT(NULL != divisor);
ASSERT(NULL != result_vector);
/* Make sure no operation is in progress. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Update the A ptr with the offset address of the PKA RAM location
* where the multiplicand will be stored. */
offset = 0;
REG(PKA_APTR) = offset >> 2;
/* Load the multiplicand in PKA RAM. */
for(i = 0; i < dividend_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = *dividend;
dividend++;
}
/* Determine the offset for the next data. */
offset += 4 * spacing;
/* Update the B ptr with the offset address of the PKA RAM location
* where the multiplier will be stored. */
REG(PKA_BPTR) = offset >> 2;
/* Load the multiplier in PKA RAM. */
for(i = 0; i < divisor_size; i++) {
REG(PKA_RAM_BASE + offset + 4 * i) = *divisor;
divisor++;
}
/* Determine the offset for the reminder. */
offset += 4 * spacing;
/* Load C ptr with the result location in PKA RAM. */
REG(PKA_CPTR) = offset >> 2;
/* Determine the offset for the quotient. */
offset += 4 * spacing;
/* Copy the quotient vector address location. */
*result_vector = PKA_RAM_BASE + offset;
/* Load D ptr with the result location in PKA RAM. */
REG(PKA_DPTR) = offset >> 2;
/* Load the respective length registers. */
REG(PKA_ALENGTH) = dividend_size;
REG(PKA_BLENGTH) = divisor_size;
/* Set the PKA function to the multiplication and start it. */
REG(PKA_FUNCTION) = (PKA_FUNCTION_RUN | PKA_FUNCTION_DIVIDE);
/* Enable Interrupt */
if(process != NULL) {
pka_register_process_notification(process);
nvic_interrupt_unpend(NVIC_INT_PKA);
nvic_interrupt_enable(NVIC_INT_PKA);
}
return PKA_STATUS_SUCCESS;
}
/*---------------------------------------------------------------------------*/
uint8_t
bignum_divide_get_result(uint32_t *buffer,
uint32_t *buffer_size,
const uint32_t result_vector)
{
uint32_t regMSWVal;
uint32_t len;
int i;
/* Check for arguments. */
ASSERT(NULL != buffer);
ASSERT(NULL != buffer_size);
ASSERT(result_vector > PKA_RAM_BASE);
ASSERT(result_vector < (PKA_RAM_BASE + PKA_RAM_SIZE));
/* Verify that the operation is complete. */
if((REG(PKA_FUNCTION) & PKA_FUNCTION_RUN) != 0) {
return PKA_STATUS_OPERATION_INPRG;
}
/* Disable Interrupt */
nvic_interrupt_disable(NVIC_INT_PKA);
pka_register_process_notification(NULL);
/* Get the MSW register value. */
regMSWVal = REG(PKA_MSW);
/* Check to make sure that the result vector is not all zeroes. */
if(regMSWVal & PKA_MSW_RESULT_IS_ZERO) {
return PKA_STATUS_RESULT_0;
}
/* Get the length of the result. */
len = ((regMSWVal & PKA_MSW_MSW_ADDRESS_M) + 1)
- ((result_vector - PKA_RAM_BASE) >> 2);
/* Make sure that the length of the supplied result buffer is adequate
* to store the resultant. */
if(*buffer_size < len) {
return PKA_STATUS_BUF_UNDERFLOW;
}
/* Copy the resultant length. */
*buffer_size = len;
/* Copy the result from vector C into the pResult. */
for(i = 0; i < *buffer_size; i++) {
buffer[i] = REG(result_vector + 4 * i);
}
return PKA_STATUS_SUCCESS;
}
/** @} */