Merge pull request #1776 from herjulf/master
Removed unused file platform/avr-rss2/dev/ds18b20.c
This commit is contained in:
commit
d36c8762c1
@ -1,247 +0,0 @@
|
||||
/*
|
||||
|
||||
Contiki library for DS18B20 temperature sensor -
|
||||
For more details see http://xxx
|
||||
|
||||
Author -
|
||||
Author -
|
||||
|
||||
License - GPLv3
|
||||
|
||||
*/
|
||||
|
||||
#include "ds18b20.h"
|
||||
|
||||
/* probe_for_ds18b20 probes for the sensor. Returns 0 on failure, 1 on success */
|
||||
/* Assumptions: only one sensor on the "1-wire bus", on port WSN_DS18B20_PORT */
|
||||
/* BUG: THIS CODE DOES NOT WORK AS INTENDED! IT RETURNS "1" EVEN WHEN THERE IS NO */
|
||||
/* SENSOR CONNECTED. */
|
||||
|
||||
uint8_t
|
||||
ds18b20_probe(void)
|
||||
{
|
||||
uint8_t result = 0;
|
||||
|
||||
/* Reset 1W-bus */
|
||||
|
||||
/* Pull PIN low for 480 microseconds (us) */
|
||||
/* Start with setting bit DS18B20_1_PIN to 0 */
|
||||
OW_SET_PIN_LOW();
|
||||
/* then set direction to OUT by setting DS18B20_1_DDR bit to 1 */
|
||||
OW_SET_OUTPUT();
|
||||
/* Delay 480 us */
|
||||
clock_delay_usec(480);
|
||||
/* See if sensor responds. First release the bus and switch to INput mode */
|
||||
/* by setting DS18B20_1_DDR bit to 0 */
|
||||
OW_SET_INPUT();
|
||||
/* Activate internal pull-up by setting pin to HIGH (when in INput mode) */
|
||||
/* OW_SET_PIN_HIGH(); */
|
||||
/* Wait for the pin to go HIGH for 64 us */
|
||||
clock_delay_usec(64);
|
||||
/* Now the sensor, if present, pulls the pin LOW for 60-240 us */
|
||||
/* Detect 0 on PIND bit DS18B20_1_PIN. Invert the result so a presence (aka a 0) */
|
||||
/* sets "result" to 1 (for success) */
|
||||
result = !OW_GET_PIN_STATE();
|
||||
|
||||
/* The sensor releases the pin so it goes HIGH after 240 us, add some */
|
||||
/* for the signal to stabilize, say 300 usecs to be on the safe side? */
|
||||
if(result) {
|
||||
clock_delay_usec(300);
|
||||
/* Now the bus should be HIGH again */
|
||||
result = OW_GET_PIN_STATE();
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
/* Write 1 or 0 on the bus */
|
||||
|
||||
void
|
||||
write_bit(uint8_t bit)
|
||||
{
|
||||
/* Set pin to 0 */
|
||||
OW_SET_OUTPUT();
|
||||
OW_SET_PIN_LOW();
|
||||
|
||||
/* Pin should be 0 for at least 1 us */
|
||||
clock_delay_usec(2);
|
||||
|
||||
/* If we're writing a 1, let interna pull-up pull the bus high */
|
||||
/* within 15 us of setting the bus to low */
|
||||
if(bit) {
|
||||
/* Internal pull-up is activated by setting direction to IN and the */
|
||||
/* setting the pin to HIGH */
|
||||
OW_SET_INPUT();
|
||||
OW_SET_PIN_HIGH();
|
||||
}
|
||||
/* OK, now the bus is either LOW, or pulled HIGH by the internal pull-up */
|
||||
/* Let this state remain for 60 us, then release the bus */
|
||||
clock_delay_usec(60);
|
||||
|
||||
/* Release the bus */
|
||||
OW_SET_PIN_HIGH();
|
||||
OW_SET_INPUT();
|
||||
|
||||
/* Allow > 1 us between read/write operations */
|
||||
clock_delay_usec(2);
|
||||
}
|
||||
/* */
|
||||
/* Read one bit of information from the bus, and return it as 1 or 0 */
|
||||
/* */
|
||||
|
||||
uint8_t
|
||||
read_bit(void)
|
||||
{
|
||||
uint8_t bit = 0;
|
||||
|
||||
/* Set pin to 0 */
|
||||
OW_SET_OUTPUT();
|
||||
OW_SET_PIN_LOW();
|
||||
|
||||
/* Pin should be 0 for at least 1 us */
|
||||
clock_delay_usec(2);
|
||||
|
||||
/* Now read the bus, start by setting in/out direction and activating internal */
|
||||
/* pull-up resistor */
|
||||
OW_SET_INPUT();
|
||||
OW_SET_PIN_HIGH();
|
||||
|
||||
/* ds18b20 either keeps the pin down or releases the bus and the */
|
||||
/* bus then goes high because of the interna pull-up resistor */
|
||||
/* Check whichever happens before 15 us has passed */
|
||||
clock_delay_usec(15 - 2 - 1);
|
||||
bit = OW_GET_PIN_STATE();
|
||||
|
||||
/* The complete read cycle must last at least 60 us. We have now spent */
|
||||
/* about 14-15 us in delays, so add another delay to reach >= 60 us */
|
||||
clock_delay_usec(50);
|
||||
|
||||
/* Release bus */
|
||||
OW_SET_PIN_HIGH();
|
||||
OW_SET_INPUT();
|
||||
|
||||
/* Allow > 1 us between read/write operations */
|
||||
clock_delay_usec(2);
|
||||
|
||||
return bit ? 1 : 0;
|
||||
}
|
||||
/* */
|
||||
/* Read one byte of information. A byte is read least significant bit first */
|
||||
/* */
|
||||
|
||||
uint8_t
|
||||
read_byte(void)
|
||||
{
|
||||
uint8_t result = 0;
|
||||
uint8_t bit;
|
||||
int i;
|
||||
|
||||
for(i = 0; i < 8; i++) {
|
||||
bit = read_bit();
|
||||
result += (bit << i);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
/* */
|
||||
/* Write one byte of information. A byte is written least significant bit first */
|
||||
/* */
|
||||
|
||||
void
|
||||
write_byte(uint8_t byte)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i = 0; i < 8; i++) {
|
||||
write_bit((byte >> i) & 1);
|
||||
}
|
||||
}
|
||||
/* */
|
||||
/* ds18b20_get_temp returns the temperature in "temp" (in degrees celsius) */
|
||||
/* Returns 0 on failure (and then "temp" is left unchanged */
|
||||
/* Returns 1 on success, and sets temp */
|
||||
/* */
|
||||
|
||||
uint8_t
|
||||
ds18b20_get_temp(float *temp)
|
||||
{
|
||||
uint8_t result = 0;
|
||||
|
||||
/* Reset bus by probing. Probe returns 1 on success/presence of sensor */
|
||||
if(ds18b20_probe()) {
|
||||
/* write command "skip rom" since we only have one sensor on the wire! */
|
||||
write_byte(DS18B20_COMMAND_SKIP_ROM);
|
||||
|
||||
/* write command to start measurement */
|
||||
write_byte(DS18B20_COMMAND_START_CONVERSION);
|
||||
|
||||
/* Wait for conversion to complete */
|
||||
/* Conversion is 12-bit by default. */
|
||||
/* Since we have external power to the sensor (ie not in "parasitic power" mode) */
|
||||
/* the bus is held LOW by the sensor while the conversion is going on, and then HIGH */
|
||||
/* when conversion is finished. */
|
||||
OW_SET_INPUT();
|
||||
int count = 0;
|
||||
while(!OW_GET_PIN_STATE()) {
|
||||
clock_delay_msec(10);
|
||||
count++;
|
||||
/* Longest conversion time is 750 ms (12-bit resolution) */
|
||||
/* So if count > 80 (for a little margin!), we return -274.0 */
|
||||
/* which indicates failure to read the temperature. */
|
||||
if(count > 80) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* The result is stored in the "scratch pad", a 9 byte memory block. */
|
||||
/* The first two bytes are the conversion result. Reading the scratch pad */
|
||||
/* can be terminated by sending a reset signal (but we read all 9 bytes) */
|
||||
(void)ds18b20_probe();
|
||||
write_byte(DS18B20_COMMAND_SKIP_ROM);
|
||||
write_byte(DS18B20_COMMAND_READ_SCRATCH_PAD);
|
||||
uint8_t i, sp_arr[9];
|
||||
for(i = 0; i < 9; i++) {
|
||||
sp_arr[i] = read_byte();
|
||||
}
|
||||
|
||||
/* Check CRC, if mismatch, return 0 (failure to read temperature) */
|
||||
uint8_t crc_cal = crc8_ds18b20(sp_arr, 8);
|
||||
|
||||
if(crc_cal != sp_arr[8]) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* OK, now decode what the temperature reading is. This code assumes 12-bit resolution, */
|
||||
/* so this must be modified if the code is modified to use any other resolution! */
|
||||
int16_t temp_res;
|
||||
uint8_t temp_lsb = sp_arr[0];
|
||||
uint8_t temp_msb = sp_arr[1];
|
||||
|
||||
temp_res = (int16_t)temp_msb << 8 | temp_lsb;
|
||||
*temp = (float)temp_res * 0.0625;
|
||||
|
||||
result = 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
/* */
|
||||
/* crc8 algorithm for ds18b20 */
|
||||
/* http://www.miscel.dk/MiscEl/CRCcalculations.html */
|
||||
/* */
|
||||
|
||||
uint8_t
|
||||
crc8_ds18b20(uint8_t *buf, uint8_t buf_len)
|
||||
{
|
||||
uint8_t result = 0;
|
||||
uint8_t i, b;
|
||||
|
||||
for(i = 0; i < buf_len; i++) {
|
||||
result = result ^ buf[i];
|
||||
for(b = 1; b < 9; b++) {
|
||||
if(result & 0x1) {
|
||||
result = (result >> 1) ^ 0x8C;
|
||||
} else {
|
||||
result = result >> 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
Loading…
Reference in New Issue
Block a user