nes-proj/drivers/platform/jn516x/contiki-jn516x-main.c

498 lines
14 KiB
C

/*
* Copyright (c) 2014, SICS Swedish ICT.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file is part of the Contiki OS
*
*/
/**
* \file
* Contiki main for NXP JN516X platform
*
* \author
* Beshr Al Nahas <beshr@sics.se>
* Atis Elsts <atis.elsts@sics.se>
*/
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "dev/watchdog.h"
#include <AppHardwareApi.h>
#include <BbcAndPhyRegs.h>
#include <recal.h>
#include "dev/uart0.h"
#include "dev/uart-driver.h"
#include "contiki.h"
#include "net/netstack.h"
#include "net/queuebuf.h"
#include "dev/serial-line.h"
#include "net/ip/uip.h"
#include "dev/leds.h"
#include "lib/random.h"
#include "sys/node-id.h"
#include "rtimer-arch.h"
#if NETSTACK_CONF_WITH_IPV6
#include "net/ipv6/uip-ds6.h"
#endif /* NETSTACK_CONF_WITH_IPV6 */
#include "dev/micromac-radio.h"
#include "MMAC.h"
/* Includes depending on connected sensor boards */
#if SENSOR_BOARD_DR1175
#include "light-sensor.h"
#include "ht-sensor.h"
SENSORS(&light_sensor, &ht_sensor);
#elif SENSOR_BOARD_DR1199
#include "button-sensor.h"
#include "pot-sensor.h"
SENSORS(&pot_sensor, &button_sensor);
#else
#include "dev/button-sensor.h"
/* #include "dev/pir-sensor.h" */
/* #include "dev/vib-sensor.h" */
/* &pir_sensor, &vib_sensor */
SENSORS(&button_sensor);
#endif
unsigned char node_mac[8];
/* Symbol defined by the linker script
* marks the end of the stack taking into account the used heap */
extern uint32_t heap_location;
#ifdef EXPERIMENT_SETUP
#include "experiment-setup.h"
#endif
/* _EXTRA_LPM is the sleep mode, _LPM is the doze mode */
#define ENERGEST_TYPE_EXTRA_LPM ENERGEST_TYPE_LPM
static void main_loop(void);
#if DCOSYNCH_CONF_ENABLED
static unsigned long last_dco_calibration_time;
#endif
static uint64_t sleep_start;
static uint32_t sleep_start_ticks;
/*---------------------------------------------------------------------------*/
#define DEBUG 1
#if DEBUG
#define PRINTF(...) do { printf(__VA_ARGS__); } while(0)
#else
#define PRINTF(...) do {} while(0)
#endif
/*---------------------------------------------------------------------------*/
/* Reads MAC from SoC
* Must be called before node_id_restore()
* and network addresses initialization */
static void
init_node_mac(void)
{
tuAddr psExtAddress;
vMMAC_GetMacAddress(&psExtAddress.sExt);
node_mac[7] = psExtAddress.sExt.u32L;
node_mac[6] = psExtAddress.sExt.u32L >> (uint32_t)8;
node_mac[5] = psExtAddress.sExt.u32L >> (uint32_t)16;
node_mac[4] = psExtAddress.sExt.u32L >> (uint32_t)24;
node_mac[3] = psExtAddress.sExt.u32H;
node_mac[2] = psExtAddress.sExt.u32H >> (uint32_t)8;
node_mac[1] = psExtAddress.sExt.u32H >> (uint32_t)16;
node_mac[0] = psExtAddress.sExt.u32H >> (uint32_t)24;
}
/*---------------------------------------------------------------------------*/
#if !PROCESS_CONF_NO_PROCESS_NAMES
static void
print_processes(struct process *const processes[])
{
/* const struct process * const * p = processes;*/
PRINTF("Starting");
while(*processes != NULL) {
PRINTF(" '%s'", (*processes)->name);
processes++;
}
putchar('\n');
}
#endif /* !PROCESS_CONF_NO_PROCESS_NAMES */
/*---------------------------------------------------------------------------*/
static void
start_autostart_processes()
{
#if !PROCESS_CONF_NO_PROCESS_NAMES
print_processes(autostart_processes);
#endif /* !PROCESS_CONF_NO_PROCESS_NAMES */
autostart_start(autostart_processes);
}
/*---------------------------------------------------------------------------*/
#if NETSTACK_CONF_WITH_IPV6
static void
start_uip6(void)
{
NETSTACK_NETWORK.init();
#ifndef WITH_SLIP_RADIO
process_start(&tcpip_process, NULL);
#else
#if WITH_SLIP_RADIO == 0
process_start(&tcpip_process, NULL);
#endif
#endif /* WITH_SLIP_RADIO */
#if DEBUG
PRINTF("Tentative link-local IPv6 address ");
{
uip_ds6_addr_t *lladdr;
int i;
lladdr = uip_ds6_get_link_local(-1);
for(i = 0; i < 7; ++i) {
PRINTF("%02x%02x:", lladdr->ipaddr.u8[i * 2],
lladdr->ipaddr.u8[i * 2 + 1]);
/* make it hardcoded... */
}
lladdr->state = ADDR_AUTOCONF;
PRINTF("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]);
}
#endif /* DEBUG */
if(!UIP_CONF_IPV6_RPL) {
uip_ipaddr_t ipaddr;
int i;
uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0);
uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);
uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE);
PRINTF("Tentative global IPv6 address ");
for(i = 0; i < 7; ++i) {
PRINTF("%02x%02x:",
ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]);
}
PRINTF("%02x%02x\n",
ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]);
}
}
#endif /* NETSTACK_CONF_WITH_IPV6 */
/*---------------------------------------------------------------------------*/
static void
set_linkaddr(void)
{
int i;
linkaddr_t addr;
memset(&addr, 0, LINKADDR_SIZE);
#if NETSTACK_CONF_WITH_IPV6
memcpy(addr.u8, node_mac, sizeof(addr.u8));
#else
if(node_id == 0) {
for(i = 0; i < LINKADDR_SIZE; ++i) {
addr.u8[i] = node_mac[LINKADDR_SIZE - 1 - i];
}
} else {
addr.u8[0] = node_id & 0xff;
addr.u8[1] = node_id >> 8;
}
#endif
linkaddr_set_node_addr(&addr);
#if DEBUG
PRINTF("Link-layer address: ");
for(i = 0; i < sizeof(addr.u8) - 1; i++) {
PRINTF("%d.", addr.u8[i]);
}
PRINTF("%d\n", addr.u8[i]);
#endif
}
/*---------------------------------------------------------------------------*/
bool_t
xosc_init(void)
{
/* The internal 32kHz RC oscillator is used by default;
* Initialize and enable the external 32.768kHz crystal.
*/
vAHI_Init32KhzXtal();
/* Switch to the 32.768kHz crystal.
* This will block and wait up to 1 sec for it to stabilize. */
return bAHI_Set32KhzClockMode(E_AHI_XTAL);
}
/*---------------------------------------------------------------------------*/
#if WITH_TINYOS_AUTO_IDS
uint16_t TOS_NODE_ID = 0x1234; /* non-zero */
uint16_t TOS_LOCAL_ADDRESS = 0x1234; /* non-zero */
#endif /* WITH_TINYOS_AUTO_IDS */
int
main(void)
{
/* Set stack overflow address for detecting overflow in runtime */
vAHI_SetStackOverflow(TRUE, ((uint32_t *)&heap_location)[0]);
/* Initialize random with a seed from the SoC random generator.
* This must be done before selecting the high-precision external oscillator.
*/
vAHI_StartRandomNumberGenerator(E_AHI_RND_SINGLE_SHOT, E_AHI_INTS_DISABLED);
random_init(u16AHI_ReadRandomNumber());
clock_init();
rtimer_init();
#if JN516X_EXTERNAL_CRYSTAL_OSCILLATOR
/* initialize the 32kHz crystal and wait for ready */
xosc_init();
/* need to reinitialize because the wait-for-ready process uses system timers */
clock_init();
rtimer_init();
#endif
watchdog_init();
leds_init();
leds_on(LEDS_ALL);
init_node_mac();
energest_init();
ENERGEST_ON(ENERGEST_TYPE_CPU);
node_id_restore();
#if WITH_TINYOS_AUTO_IDS
node_id = TOS_NODE_ID;
#endif /* WITH_TINYOS_AUTO_IDS */
/* for setting "hardcoded" IEEE 802.15.4 MAC addresses */
#ifdef IEEE_802154_MAC_ADDRESS
{
uint8_t ieee[] = IEEE_802154_MAC_ADDRESS;
memcpy(node_mac, ieee, sizeof(uip_lladdr.addr));
node_mac[7] = node_id & 0xff;
}
#endif
process_init();
ctimer_init();
uart0_init(UART_BAUD_RATE); /* Must come before first PRINTF */
/* check for reset source */
if(bAHI_WatchdogResetEvent()) {
PRINTF("Init: Watchdog timer has reset device!\r\n");
}
process_start(&etimer_process, NULL);
set_linkaddr();
netstack_init();
#if NETSTACK_CONF_WITH_IPV6
#if UIP_CONF_IPV6_RPL
PRINTF(CONTIKI_VERSION_STRING " started with IPV6, RPL\n");
#else
PRINTF(CONTIKI_VERSION_STRING " started with IPV6\n");
#endif
PRINTF(CONTIKI_VERSION_STRING " started\n");
#endif
if(node_id > 0) {
PRINTF("Node id is set to %u.\n", node_id);
} else {
PRINTF("Node id is not set.\n");
}
#if NETSTACK_CONF_WITH_IPV6
memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr));
queuebuf_init();
#endif /* NETSTACK_CONF_WITH_IPV6 */
PRINTF("%s\n",NETSTACK_MAC.name);
#ifndef UIP_FALLBACK_INTERFACE
uart0_set_input(serial_line_input_byte);
serial_line_init();
#endif /* UIP_FALLBACK_INTERFACE */
#if TIMESYNCH_CONF_ENABLED
timesynch_init();
timesynch_set_authority_level((linkaddr_node_addr.u8[0] << 4) + 16);
#endif /* TIMESYNCH_CONF_ENABLED */
watchdog_start();
#if NETSTACK_CONF_WITH_IPV6
start_uip6();
#endif /* NETSTACK_CONF_WITH_IPV6 */
/* need this to reliably generate the first rtimer callback and callbacks in other
auto-start processes */
(void)u32AHI_Init();
start_autostart_processes();
leds_off(LEDS_ALL);
main_loop();
return -1;
}
static void
main_loop(void)
{
int r;
clock_time_t time_to_etimer;
rtimer_clock_t ticks_to_rtimer;
while(1) {
do {
/* Reset watchdog. */
watchdog_periodic();
r = process_run();
} while(r > 0);
/*
* Idle processing.
*/
watchdog_stop();
#if DCOSYNCH_CONF_ENABLED
/* Calibrate the DCO every DCOSYNCH_PERIOD
* if we have more than 500uSec until next rtimer
* PS: Calibration disables interrupts and blocks for 200uSec.
* */
if(clock_seconds() - last_dco_calibration_time > DCOSYNCH_PERIOD) {
if(rtimer_arch_time_to_rtimer() > RTIMER_SECOND / 2000) {
/* PRINTF("ContikiMain: Calibrating the DCO\n"); */
eAHI_AttemptCalibration();
/* Patch to allow CpuDoze after calibration */
vREG_PhyWrite(REG_PHY_IS, REG_PHY_INT_VCO_CAL_MASK);
last_dco_calibration_time = clock_seconds();
}
}
#endif /* DCOSYNCH_CONF_ENABLED */
/* flush standard output before sleeping */
uart_driver_flush(E_AHI_UART_0, TRUE, FALSE);
/* calculate the time to the next etimer and rtimer */
time_to_etimer = clock_arch_time_to_etimer();
ticks_to_rtimer = rtimer_arch_time_to_rtimer();
#if JN516X_SLEEP_ENABLED
/* we can sleep only up to the next rtimer/etimer */
rtimer_clock_t max_sleep_time = ticks_to_rtimer;
if(max_sleep_time >= JN516X_MIN_SLEEP_TIME) {
/* also take into account etimers */
uint64_t ticks_to_etimer = ((uint64_t)time_to_etimer * RTIMER_SECOND) / CLOCK_SECOND;
max_sleep_time = MIN(ticks_to_etimer, ticks_to_rtimer);
}
if(max_sleep_time >= JN516X_MIN_SLEEP_TIME) {
max_sleep_time -= JN516X_SLEEP_GUARD_TIME;
/* bound the sleep time to 1 second */
max_sleep_time = MIN(max_sleep_time, JN516X_MAX_SLEEP_TIME);
#if !RTIMER_USE_32KHZ
/* convert to 32.768 kHz oscillator ticks */
max_sleep_time = (uint64_t)max_sleep_time * JN516X_XOSC_SECOND / RTIMER_SECOND;
#endif
vAHI_WakeTimerEnable(WAKEUP_TIMER, TRUE);
/* sync with the tick timer */
WAIT_FOR_EDGE(sleep_start);
sleep_start_ticks = u32AHI_TickTimerRead();
vAHI_WakeTimerStartLarge(WAKEUP_TIMER, max_sleep_time);
ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_EXTRA_LPM);
vAHI_Sleep(E_AHI_SLEEP_OSCON_RAMON);
} else {
#else
{
#endif /* JN516X_SLEEP_ENABLED */
clock_arch_schedule_interrupt(time_to_etimer, ticks_to_rtimer);
ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_LPM);
vAHI_CpuDoze();
watchdog_start();
ENERGEST_SWITCH(ENERGEST_TYPE_LPM, ENERGEST_TYPE_CPU);
}
}
}
/*---------------------------------------------------------------------------*/
void
AppColdStart(void)
{
/* After reset or sleep with memory off */
main();
}
/*---------------------------------------------------------------------------*/
void
AppWarmStart(void)
{
/* Wakeup after sleep with memory on.
* Need to initialize devices but not the application state.
* Note: the actual time this function is called is
* ~8 ticks (32kHz timer) later than the scheduled sleep end time.
*/
uint32_t sleep_ticks;
uint64_t sleep_end;
rtimer_clock_t sleep_ticks_rtimer;
clock_arch_calibrate();
leds_init();
uart0_init(UART_BAUD_RATE); /* Must come before first PRINTF */
NETSTACK_RADIO.init();
watchdog_init();
watchdog_stop();
WAIT_FOR_EDGE(sleep_end);
sleep_ticks = (uint32_t)(sleep_start - sleep_end) + 1;
#if RTIMER_USE_32KHZ
sleep_ticks_rtimer = sleep_ticks;
#else
{
static uint32_t remainder;
uint64_t t = (uint64_t)sleep_ticks * RTIMER_SECOND + remainder;
sleep_ticks_rtimer = (uint32_t)(t / JN516X_XOSC_SECOND);
remainder = t - sleep_ticks_rtimer * JN516X_XOSC_SECOND;
}
#endif
/* reinitialize rtimers */
rtimer_arch_reinit(sleep_start_ticks, sleep_ticks_rtimer);
ENERGEST_SWITCH(ENERGEST_TYPE_EXTRA_LPM, ENERGEST_TYPE_CPU);
watchdog_start();
/* reinitialize clock */
clock_arch_init(1);
/* schedule etimer interrupt */
clock_arch_schedule_interrupt(clock_arch_time_to_etimer(), rtimer_arch_time_to_rtimer());
#if DCOSYNCH_CONF_ENABLED
/* The radio is recalibrated on wakeup */
last_dco_calibration_time = clock_seconds();
#endif
main_loop();
}
/*---------------------------------------------------------------------------*/