nes-proj/arch/cpu/cc2538/dev/cc2538-rf.c

1183 lines
35 KiB
C

/*
* Copyright (c) 2012, Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \addtogroup cc2538-rf
* @{
*
* \file
* Implementation of the cc2538 RF driver
*/
#include "contiki.h"
#include "dev/radio.h"
#include "sys/clock.h"
#include "sys/rtimer.h"
#include "net/packetbuf.h"
#include "net/linkaddr.h"
#include "net/netstack.h"
#include "net/mac/tsch/tsch.h"
#include "sys/energest.h"
#include "dev/cc2538-rf.h"
#include "dev/rfcore.h"
#include "dev/sys-ctrl.h"
#include "dev/udma.h"
#include "reg.h"
#include <string.h>
/*---------------------------------------------------------------------------*/
#define CHECKSUM_LEN 2
/* uDMA channel control persistent flags */
#define UDMA_TX_FLAGS (UDMA_CHCTL_ARBSIZE_128 | UDMA_CHCTL_XFERMODE_AUTO \
| UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_DSTSIZE_8 \
| UDMA_CHCTL_SRCINC_8 | UDMA_CHCTL_DSTINC_NONE)
#define UDMA_RX_FLAGS (UDMA_CHCTL_ARBSIZE_128 | UDMA_CHCTL_XFERMODE_AUTO \
| UDMA_CHCTL_SRCSIZE_8 | UDMA_CHCTL_DSTSIZE_8 \
| UDMA_CHCTL_SRCINC_NONE | UDMA_CHCTL_DSTINC_8)
/*
* uDMA transfer threshold. DMA will only be used to read an incoming frame
* if its size is above this threshold
*/
#define UDMA_RX_SIZE_THRESHOLD 3
/*---------------------------------------------------------------------------*/
/* Log configuration */
#include "sys/log.h"
#define LOG_MODULE "cc2538-rf"
#define LOG_LEVEL LOG_LEVEL_NONE
/*---------------------------------------------------------------------------*/
/* Local RF Flags */
#define RX_ACTIVE 0x80
#define RF_MUST_RESET 0x40
#define RF_ON 0x01
/* Bit Masks for the last byte in the RX FIFO */
#define CRC_BIT_MASK 0x80
#define LQI_BIT_MASK 0x7F
/* RSSI Offset */
#define RSSI_OFFSET 73
#define RSSI_INVALID -128
/* 192 usec off -> on interval (RX Callib -> SFD Wait). We wait a bit more */
#define ONOFF_TIME RTIMER_ARCH_SECOND / 3125
/*---------------------------------------------------------------------------*/
#ifdef CC2538_RF_CONF_AUTOACK
#define CC2538_RF_AUTOACK CC2538_RF_CONF_AUTOACK
#else
#define CC2538_RF_AUTOACK 1
#endif
/*---------------------------------------------------------------------------
* MAC timer
*---------------------------------------------------------------------------*/
/* Timer conversion */
#define RADIO_TO_RTIMER(X) ((uint32_t)((uint64_t)(X) * RTIMER_ARCH_SECOND / SYS_CTRL_32MHZ))
#define CLOCK_STABLE() do { \
while ( !(REG(SYS_CTRL_CLOCK_STA) & (SYS_CTRL_CLOCK_STA_XOSC_STB))); \
} while(0)
/*---------------------------------------------------------------------------*/
/* Are we currently in poll mode? Disabled by default */
static uint8_t volatile poll_mode = 0;
/* Do we perform a CCA before sending? Enabled by default. */
static uint8_t send_on_cca = 1;
static int8_t rssi;
static uint8_t crc_corr;
/*---------------------------------------------------------------------------*/
static uint8_t rf_flags;
static uint8_t rf_channel = IEEE802154_DEFAULT_CHANNEL;
static int on(void);
static int off(void);
/*---------------------------------------------------------------------------*/
/* TX Power dBm lookup table. Values from SmartRF Studio v1.16.0 */
typedef struct output_config {
radio_value_t power;
uint8_t txpower_val;
} output_config_t;
static const output_config_t output_power[] = {
{ 7, 0xFF },
{ 5, 0xED },
{ 3, 0xD5 },
{ 1, 0xC5 },
{ 0, 0xB6 },
{ -1, 0xB0 },
{ -3, 0xA1 },
{ -5, 0x91 },
{ -7, 0x88 },
{ -9, 0x72 },
{-11, 0x62 },
{-13, 0x58 },
{-15, 0x42 },
{-24, 0x00 },
};
static radio_result_t get_value(radio_param_t param, radio_value_t *value);
#define OUTPUT_CONFIG_COUNT (sizeof(output_power) / sizeof(output_config_t))
/* Max and Min Output Power in dBm */
#define OUTPUT_POWER_MIN (output_power[OUTPUT_CONFIG_COUNT - 1].power)
#define OUTPUT_POWER_MAX (output_power[0].power)
/*---------------------------------------------------------------------------*/
PROCESS(cc2538_rf_process, "cc2538 RF driver");
/*---------------------------------------------------------------------------*/
/**
* \brief Get the current operating channel
* \return Returns a value in [11,26] representing the current channel
*/
static uint8_t
get_channel()
{
return rf_channel;
}
/*---------------------------------------------------------------------------*/
/**
* \brief Set the current operating channel
* \param channel The desired channel as a value in [11,26]
*/
static void
set_channel(uint8_t channel)
{
uint8_t was_on = 0;
LOG_INFO("Set Channel\n");
/* Changes to FREQCTRL take effect after the next recalibration */
/* If we are off, save state, otherwise switch off and save state */
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) != 0) {
was_on = 1;
off();
}
REG(RFCORE_XREG_FREQCTRL) = CC2538_RF_CHANNEL_MIN +
(channel - CC2538_RF_CHANNEL_MIN) * CC2538_RF_CHANNEL_SPACING;
/* switch radio back on only if radio was on before - otherwise will turn on radio foor sleepy nodes */
if(was_on) {
on();
}
rf_channel = channel;
}
/*---------------------------------------------------------------------------*/
static radio_value_t
get_pan_id(void)
{
return (radio_value_t)(REG(RFCORE_FFSM_PAN_ID1) << 8 | REG(RFCORE_FFSM_PAN_ID0));
}
/*---------------------------------------------------------------------------*/
static void
set_pan_id(uint16_t pan)
{
REG(RFCORE_FFSM_PAN_ID0) = pan & 0xFF;
REG(RFCORE_FFSM_PAN_ID1) = pan >> 8;
}
/*---------------------------------------------------------------------------*/
static radio_value_t
get_short_addr(void)
{
return (radio_value_t)(REG(RFCORE_FFSM_SHORT_ADDR1) << 8 | REG(RFCORE_FFSM_SHORT_ADDR0));
}
/*---------------------------------------------------------------------------*/
static void
set_short_addr(uint16_t addr)
{
REG(RFCORE_FFSM_SHORT_ADDR0) = addr & 0xFF;
REG(RFCORE_FFSM_SHORT_ADDR1) = addr >> 8;
}
/*---------------------------------------------------------------------------*/
/**
* \brief Reads the current signal strength (RSSI)
* \return The current RSSI in dBm
*
* This function reads the current RSSI on the currently configured
* channel.
*/
static radio_value_t
get_rssi(void)
{
int8_t rssi;
uint8_t was_off = 0;
/* If we are off, turn on first */
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
was_off = 1;
on();
}
/* Wait for a valid RSSI reading */
do {
rssi = REG(RFCORE_XREG_RSSI);
} while(rssi == RSSI_INVALID);
rssi -= RSSI_OFFSET;
/* If we were off, turn back off */
if(was_off) {
off();
}
return rssi;
}
/*---------------------------------------------------------------------------*/
/* Returns the current CCA threshold in dBm */
static radio_value_t
get_cca_threshold(void)
{
return (int8_t)(REG(RFCORE_XREG_CCACTRL0) & RFCORE_XREG_CCACTRL0_CCA_THR) - RSSI_OFFSET;
}
/*---------------------------------------------------------------------------*/
/* Sets the CCA threshold in dBm */
static void
set_cca_threshold(radio_value_t value)
{
REG(RFCORE_XREG_CCACTRL0) = (value & 0xFF) + RSSI_OFFSET;
}
/*---------------------------------------------------------------------------*/
/* Returns the current TX power in dBm */
static radio_value_t
get_tx_power(void)
{
int i;
uint8_t reg_val = REG(RFCORE_XREG_TXPOWER) & 0xFF;
/*
* Find the TXPOWER value in the lookup table
* If the value has been written with set_tx_power, we should be able to
* find the exact value. However, in case the register has been written in
* a different fashion, we return the immediately lower value of the lookup
*/
for(i = 0; i < OUTPUT_CONFIG_COUNT; i++) {
if(reg_val >= output_power[i].txpower_val) {
return output_power[i].power;
}
}
return OUTPUT_POWER_MIN;
}
/*---------------------------------------------------------------------------*/
/*
* Set TX power to 'at least' power dBm
* This works with a lookup table. If the value of 'power' does not exist in
* the lookup table, TXPOWER will be set to the immediately higher available
* value
*/
static void
set_tx_power(radio_value_t power)
{
int i;
for(i = OUTPUT_CONFIG_COUNT - 1; i >= 0; --i) {
if(power <= output_power[i].power) {
REG(RFCORE_XREG_TXPOWER) = output_power[i].txpower_val;
return;
}
}
}
/*---------------------------------------------------------------------------*/
static void
set_frame_filtering(uint8_t enable)
{
if(enable) {
REG(RFCORE_XREG_FRMFILT0) |= RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN;
} else {
REG(RFCORE_XREG_FRMFILT0) &= ~RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN;
}
}
/*---------------------------------------------------------------------------*/
static void
set_shr_search(int enable)
{
if(enable) {
REG(RFCORE_XREG_FRMCTRL0) &= ~RFCORE_XREG_FRMCTRL0_RX_MODE;
} else {
REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_RX_MODE;
}
}
/*---------------------------------------------------------------------------*/
static void
mac_timer_init(void)
{
CLOCK_STABLE();
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_SYNC;
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_RUN;
while(!(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE));
REG(RFCORE_SFR_MTCTRL) &= ~RFCORE_SFR_MTCTRL_RUN;
while(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE);
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_SYNC;
REG(RFCORE_SFR_MTCTRL) |= (RFCORE_SFR_MTCTRL_RUN);
while(!(REG(RFCORE_SFR_MTCTRL) & RFCORE_SFR_MTCTRL_STATE));
}
/*---------------------------------------------------------------------------*/
static void
set_poll_mode(uint8_t enable)
{
poll_mode = enable;
if(enable) {
mac_timer_init();
REG(RFCORE_XREG_RFIRQM0) &= ~RFCORE_XREG_RFIRQM0_FIFOP; /* mask out FIFOP interrupt source */
REG(RFCORE_SFR_RFIRQF0) &= ~RFCORE_SFR_RFIRQF0_FIFOP; /* clear pending FIFOP interrupt */
NVIC_DisableIRQ(RF_TX_RX_IRQn); /* disable RF interrupts */
} else {
REG(RFCORE_XREG_RFIRQM0) |= RFCORE_XREG_RFIRQM0_FIFOP; /* enable FIFOP interrupt source */
NVIC_EnableIRQ(RF_TX_RX_IRQn); /* enable RF interrupts */
}
}
/*---------------------------------------------------------------------------*/
static void
set_send_on_cca(uint8_t enable)
{
send_on_cca = enable;
}
/*---------------------------------------------------------------------------*/
static void
set_auto_ack(uint8_t enable)
{
if(enable) {
REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_AUTOACK;
} else {
REG(RFCORE_XREG_FRMCTRL0) &= ~RFCORE_XREG_FRMCTRL0_AUTOACK;
}
}
/*---------------------------------------------------------------------------*/
static uint32_t
get_sfd_timestamp(void)
{
uint64_t sfd, timer_val, buffer;
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMSEL) | 0x00000000;
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_LATCH_MODE;
timer_val = REG(RFCORE_SFR_MTM0) & RFCORE_SFR_MTM0_MTM0;
timer_val |= ((REG(RFCORE_SFR_MTM1) & RFCORE_SFR_MTM1_MTM1) << 8);
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMOVFSEL) | 0x00000000;
timer_val |= ((REG(RFCORE_SFR_MTMOVF0) & RFCORE_SFR_MTMOVF0_MTMOVF0) << 16);
timer_val |= ((REG(RFCORE_SFR_MTMOVF1) & RFCORE_SFR_MTMOVF1_MTMOVF1) << 24);
buffer = REG(RFCORE_SFR_MTMOVF2) & RFCORE_SFR_MTMOVF2_MTMOVF2;
timer_val |= (buffer << 32);
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMSEL) | 0x00000001;
REG(RFCORE_SFR_MTCTRL) |= RFCORE_SFR_MTCTRL_LATCH_MODE;
sfd = REG(RFCORE_SFR_MTM0) & RFCORE_SFR_MTM0_MTM0;
sfd |= ((REG(RFCORE_SFR_MTM1) & RFCORE_SFR_MTM1_MTM1) << 8);
REG(RFCORE_SFR_MTMSEL) = (REG(RFCORE_SFR_MTMSEL) & ~RFCORE_SFR_MTMSEL_MTMOVFSEL) | 0x00000010;
sfd |= ((REG(RFCORE_SFR_MTMOVF0) & RFCORE_SFR_MTMOVF0_MTMOVF0) << 16);
sfd |= ((REG(RFCORE_SFR_MTMOVF1) & RFCORE_SFR_MTMOVF1_MTMOVF1) << 24);
buffer = REG(RFCORE_SFR_MTMOVF2) & RFCORE_SFR_MTMOVF2_MTMOVF2;
sfd |= (buffer << 32);
return RTIMER_NOW() - RADIO_TO_RTIMER(timer_val - sfd);
}
/*---------------------------------------------------------------------------*/
/* Enable or disable radio test mode emmiting modulated or unmodulated
* (carrier) signal. See User's Guide pages 719 and 741.
*/
static uint32_t prev_FRMCTRL0, prev_MDMTEST1;
static uint8_t was_on;
static void
set_test_mode(uint8_t enable, uint8_t modulated)
{
radio_value_t mode;
get_value(RADIO_PARAM_POWER_MODE, &mode);
if(enable) {
if(mode == RADIO_POWER_MODE_CARRIER_ON) {
return;
}
was_on = (mode == RADIO_POWER_MODE_ON);
off();
prev_FRMCTRL0 = REG(RFCORE_XREG_FRMCTRL0);
/* This constantly transmits random data */
REG(RFCORE_XREG_FRMCTRL0) = 0x00000042;
if(!modulated) {
prev_MDMTEST1 = REG(RFCORE_XREG_MDMTEST1);
/* ...adding this we send an unmodulated carrier instead */
REG(RFCORE_XREG_MDMTEST1) = 0x00000018;
}
CC2538_RF_CSP_ISTXON();
} else {
if(mode != RADIO_POWER_MODE_CARRIER_ON) {
return;
}
CC2538_RF_CSP_ISRFOFF();
REG(RFCORE_XREG_FRMCTRL0) = prev_FRMCTRL0;
if(!modulated) {
REG(RFCORE_XREG_MDMTEST1) = prev_MDMTEST1;
}
if(was_on) {
on();
}
}
}
/*---------------------------------------------------------------------------*/
/* Netstack API radio driver functions */
/*---------------------------------------------------------------------------*/
static int
channel_clear(void)
{
int cca;
uint8_t was_off = 0;
LOG_INFO("CCA\n");
/* If we are off, turn on first */
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
was_off = 1;
on();
}
/* Wait on RSSI_VALID */
while((REG(RFCORE_XREG_RSSISTAT) & RFCORE_XREG_RSSISTAT_RSSI_VALID) == 0);
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_CCA) {
cca = CC2538_RF_CCA_CLEAR;
} else {
cca = CC2538_RF_CCA_BUSY;
}
/* If we were off, turn back off */
if(was_off) {
off();
}
return cca;
}
/*---------------------------------------------------------------------------*/
static int
on(void)
{
LOG_INFO("On\n");
if(!(rf_flags & RX_ACTIVE)) {
CC2538_RF_CSP_ISFLUSHRX();
CC2538_RF_CSP_ISRXON();
rf_flags |= RX_ACTIVE;
}
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
return 1;
}
/*---------------------------------------------------------------------------*/
static int
off(void)
{
LOG_INFO("Off\n");
/* Wait for ongoing TX to complete (e.g. this could be an outgoing ACK) */
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
if(!(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP)) {
CC2538_RF_CSP_ISFLUSHRX();
}
/* Don't turn off if we are off as this will trigger a Strobe Error */
if(REG(RFCORE_XREG_RXENABLE) != 0) {
CC2538_RF_CSP_ISRFOFF();
}
rf_flags &= ~RX_ACTIVE;
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
return 1;
}
/*---------------------------------------------------------------------------*/
static int
init(void)
{
LOG_INFO("Init\n");
if(rf_flags & RF_ON) {
return 0;
}
/* Enable clock for the RF Core while Running, in Sleep and Deep Sleep */
REG(SYS_CTRL_RCGCRFC) = 1;
REG(SYS_CTRL_SCGCRFC) = 1;
REG(SYS_CTRL_DCGCRFC) = 1;
REG(RFCORE_XREG_CCACTRL0) = CC2538_RF_CCA_THRES;
/*
* Changes from default values
* See User Guide, section "Register Settings Update"
*/
REG(RFCORE_XREG_TXFILTCFG) = 0x09; /** TX anti-aliasing filter bandwidth */
REG(RFCORE_XREG_AGCCTRL1) = 0x15; /** AGC target value */
REG(ANA_REGS_IVCTRL) = 0x0B; /** Bias currents */
REG(RFCORE_XREG_FSCAL1) = 0x01; /** Tune frequency calibration */
/*
* Defaults:
* Auto CRC; Append RSSI, CRC-OK and Corr. Val.; CRC calculation;
* RX and TX modes with FIFOs
*/
REG(RFCORE_XREG_FRMCTRL0) = RFCORE_XREG_FRMCTRL0_AUTOCRC;
#if CC2538_RF_AUTOACK
REG(RFCORE_XREG_FRMCTRL0) |= RFCORE_XREG_FRMCTRL0_AUTOACK;
#endif
/* Disable source address matching and autopend */
REG(RFCORE_XREG_SRCMATCH) = 0;
/* MAX FIFOP threshold */
REG(RFCORE_XREG_FIFOPCTRL) = CC2538_RF_MAX_PACKET_LEN;
/* Set TX Power */
REG(RFCORE_XREG_TXPOWER) = CC2538_RF_TX_POWER;
set_channel(rf_channel);
/* Enable SHR search */
set_shr_search(1);
/* Acknowledge all RF Error interrupts */
REG(RFCORE_XREG_RFERRM) = RFCORE_XREG_RFERRM_RFERRM;
NVIC_EnableIRQ(RF_ERR_IRQn);
if(CC2538_RF_CONF_TX_USE_DMA) {
/* Disable peripheral triggers for the channel */
udma_channel_mask_set(CC2538_RF_CONF_TX_DMA_CHAN);
/*
* Set the channel's DST. SRC can not be set yet since it will change for
* each transfer
*/
udma_set_channel_dst(CC2538_RF_CONF_TX_DMA_CHAN, RFCORE_SFR_RFDATA);
}
if(CC2538_RF_CONF_RX_USE_DMA) {
/* Disable peripheral triggers for the channel */
udma_channel_mask_set(CC2538_RF_CONF_RX_DMA_CHAN);
/*
* Set the channel's SRC. DST can not be set yet since it will change for
* each transfer
*/
udma_set_channel_src(CC2538_RF_CONF_RX_DMA_CHAN, RFCORE_SFR_RFDATA);
}
set_poll_mode(poll_mode);
process_start(&cc2538_rf_process, NULL);
rf_flags |= RF_ON;
return 1;
}
/*---------------------------------------------------------------------------*/
static int
prepare(const void *payload, unsigned short payload_len)
{
uint8_t i;
LOG_INFO("Prepare 0x%02x bytes\n", payload_len + CHECKSUM_LEN);
/*
* When we transmit in very quick bursts, make sure previous transmission
* is not still in progress before re-writing to the TX FIFO
*/
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
if((rf_flags & RX_ACTIVE) == 0) {
on();
}
CC2538_RF_CSP_ISFLUSHTX();
LOG_INFO("data = ");
/* Send the phy length byte first */
REG(RFCORE_SFR_RFDATA) = payload_len + CHECKSUM_LEN;
if(CC2538_RF_CONF_TX_USE_DMA) {
LOG_INFO_("<uDMA payload>");
/* Set the transfer source's end address */
udma_set_channel_src(CC2538_RF_CONF_TX_DMA_CHAN,
(uint32_t)(payload) + payload_len - 1);
/* Configure the control word */
udma_set_channel_control_word(CC2538_RF_CONF_TX_DMA_CHAN,
UDMA_TX_FLAGS | udma_xfer_size(payload_len));
/* Enabled the RF TX uDMA channel */
udma_channel_enable(CC2538_RF_CONF_TX_DMA_CHAN);
/* Trigger the uDMA transfer */
udma_channel_sw_request(CC2538_RF_CONF_TX_DMA_CHAN);
/*
* No need to wait for this to end. Even if transmit() gets called
* immediately, the uDMA controller will stream the frame to the TX FIFO
* faster than transmit() can empty it
*/
} else {
for(i = 0; i < payload_len; i++) {
REG(RFCORE_SFR_RFDATA) = ((unsigned char *)(payload))[i];
LOG_INFO_("%02x", ((unsigned char *)(payload))[i]);
}
}
LOG_INFO_("\n");
return 0;
}
/*---------------------------------------------------------------------------*/
static int
transmit(unsigned short transmit_len)
{
uint8_t counter;
int ret = RADIO_TX_ERR;
rtimer_clock_t t0;
uint8_t was_off = 0;
LOG_INFO("Transmit\n");
if(!(rf_flags & RX_ACTIVE)) {
t0 = RTIMER_NOW();
on();
was_off = 1;
while(RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + ONOFF_TIME));
}
if(send_on_cca) {
if(channel_clear() == CC2538_RF_CCA_BUSY) {
return RADIO_TX_COLLISION;
}
}
/*
* prepare() double checked that TX_ACTIVE is low. If SFD is high we are
* receiving. Abort transmission and bail out with RADIO_TX_COLLISION
*/
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_SFD) {
return RADIO_TX_COLLISION;
}
/* Start the transmission */
ENERGEST_SWITCH(ENERGEST_TYPE_LISTEN, ENERGEST_TYPE_TRANSMIT);
CC2538_RF_CSP_ISTXON();
counter = 0;
while(!((REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE))
&& (counter++ < 3)) {
clock_delay_usec(6);
}
if(!(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE)) {
LOG_ERR("TX never active.\n");
CC2538_RF_CSP_ISFLUSHTX();
ret = RADIO_TX_ERR;
} else {
/* Wait for the transmission to finish */
while(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_TX_ACTIVE);
ret = RADIO_TX_OK;
}
ENERGEST_SWITCH(ENERGEST_TYPE_TRANSMIT, ENERGEST_TYPE_LISTEN);
if(was_off) {
off();
}
return ret;
}
/*---------------------------------------------------------------------------*/
static int
send(const void *payload, unsigned short payload_len)
{
prepare(payload, payload_len);
return transmit(payload_len);
}
/*---------------------------------------------------------------------------*/
static int
read(void *buf, unsigned short bufsize)
{
uint8_t i;
uint8_t len;
LOG_INFO("Read\n");
if((REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP) == 0) {
return 0;
}
/* Check the length */
len = REG(RFCORE_SFR_RFDATA);
/* Check for validity */
if(len > CC2538_RF_MAX_PACKET_LEN) {
/* Oops, we must be out of sync. */
LOG_ERR("RF: bad sync\n");
CC2538_RF_CSP_ISFLUSHRX();
return 0;
}
if(len <= CC2538_RF_MIN_PACKET_LEN) {
LOG_ERR("RF: too short\n");
CC2538_RF_CSP_ISFLUSHRX();
return 0;
}
if(len - CHECKSUM_LEN > bufsize) {
LOG_ERR("RF: too long\n");
CC2538_RF_CSP_ISFLUSHRX();
return 0;
}
/* If we reach here, chances are the FIFO is holding a valid frame */
LOG_INFO("read (0x%02x bytes) = ", len);
len -= CHECKSUM_LEN;
/* Don't bother with uDMA for short frames (e.g. ACKs) */
if(CC2538_RF_CONF_RX_USE_DMA && len > UDMA_RX_SIZE_THRESHOLD) {
LOG_INFO_("<uDMA payload>");
/* Set the transfer destination's end address */
udma_set_channel_dst(CC2538_RF_CONF_RX_DMA_CHAN,
(uint32_t)(buf) + len - 1);
/* Configure the control word */
udma_set_channel_control_word(CC2538_RF_CONF_RX_DMA_CHAN,
UDMA_RX_FLAGS | udma_xfer_size(len));
/* Enabled the RF RX uDMA channel */
udma_channel_enable(CC2538_RF_CONF_RX_DMA_CHAN);
/* Trigger the uDMA transfer */
udma_channel_sw_request(CC2538_RF_CONF_RX_DMA_CHAN);
/* Wait for the transfer to complete. */
while(udma_channel_get_mode(CC2538_RF_CONF_RX_DMA_CHAN));
} else {
for(i = 0; i < len; ++i) {
((unsigned char *)(buf))[i] = REG(RFCORE_SFR_RFDATA);
LOG_INFO_("%02x", ((unsigned char *)(buf))[i]);
}
}
/* Read the RSSI and CRC/Corr bytes */
rssi = ((int8_t)REG(RFCORE_SFR_RFDATA)) - RSSI_OFFSET;
crc_corr = REG(RFCORE_SFR_RFDATA);
LOG_INFO_("%02x%02x\n", (uint8_t)rssi, crc_corr);
/* MS bit CRC OK/Not OK, 7 LS Bits, Correlation value */
if(crc_corr & CRC_BIT_MASK) {
packetbuf_set_attr(PACKETBUF_ATTR_RSSI, rssi);
packetbuf_set_attr(PACKETBUF_ATTR_LINK_QUALITY, crc_corr & LQI_BIT_MASK);
} else {
LOG_ERR("Bad CRC\n");
CC2538_RF_CSP_ISFLUSHRX();
return 0;
}
if(!poll_mode) {
/* If FIFOP==1 and FIFO==0 then we had a FIFO overflow at some point. */
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP) {
if(REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFO) {
process_poll(&cc2538_rf_process);
} else {
CC2538_RF_CSP_ISFLUSHRX();
}
}
}
return len;
}
/*---------------------------------------------------------------------------*/
static int
receiving_packet(void)
{
LOG_INFO("Receiving\n");
/*
* SFD high while transmitting and receiving.
* TX_ACTIVE high only when transmitting
*
* FSMSTAT1 & (TX_ACTIVE | SFD) == SFD <=> receiving
*/
return (REG(RFCORE_XREG_FSMSTAT1)
& (RFCORE_XREG_FSMSTAT1_TX_ACTIVE | RFCORE_XREG_FSMSTAT1_SFD))
== RFCORE_XREG_FSMSTAT1_SFD;
}
/*---------------------------------------------------------------------------*/
static int
pending_packet(void)
{
LOG_INFO("Pending\n");
return REG(RFCORE_XREG_FSMSTAT1) & RFCORE_XREG_FSMSTAT1_FIFOP;
}
/*---------------------------------------------------------------------------*/
static radio_result_t
get_value(radio_param_t param, radio_value_t *value)
{
if(!value) {
return RADIO_RESULT_INVALID_VALUE;
}
switch(param) {
case RADIO_PARAM_POWER_MODE:
if((REG(RFCORE_XREG_RXENABLE) & RFCORE_XREG_RXENABLE_RXENMASK) == 0) {
*value = RADIO_POWER_MODE_OFF;
} else {
*value = (REG(RFCORE_XREG_FRMCTRL0) & RFCORE_XREG_FRMCTRL0_TX_MODE) == 0
? RADIO_POWER_MODE_ON : RADIO_POWER_MODE_CARRIER_ON;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_CHANNEL:
*value = (radio_value_t)get_channel();
return RADIO_RESULT_OK;
case RADIO_PARAM_PAN_ID:
*value = get_pan_id();
return RADIO_RESULT_OK;
case RADIO_PARAM_16BIT_ADDR:
*value = get_short_addr();
return RADIO_RESULT_OK;
case RADIO_PARAM_RX_MODE:
*value = 0;
if(REG(RFCORE_XREG_FRMFILT0) & RFCORE_XREG_FRMFILT0_FRAME_FILTER_EN) {
*value |= RADIO_RX_MODE_ADDRESS_FILTER;
}
if(REG(RFCORE_XREG_FRMCTRL0) & RFCORE_XREG_FRMCTRL0_AUTOACK) {
*value |= RADIO_RX_MODE_AUTOACK;
}
if(poll_mode) {
*value |= RADIO_RX_MODE_POLL_MODE;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_TX_MODE:
*value = 0;
if(send_on_cca) {
*value |= RADIO_TX_MODE_SEND_ON_CCA;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_TXPOWER:
*value = get_tx_power();
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
*value = get_cca_threshold();
return RADIO_RESULT_OK;
case RADIO_PARAM_RSSI:
*value = get_rssi();
return RADIO_RESULT_OK;
case RADIO_PARAM_LAST_RSSI:
*value = rssi;
return RADIO_RESULT_OK;
case RADIO_PARAM_LAST_LINK_QUALITY:
*value = crc_corr & LQI_BIT_MASK;
return RADIO_RESULT_OK;
case RADIO_CONST_CHANNEL_MIN:
*value = CC2538_RF_CHANNEL_MIN;
return RADIO_RESULT_OK;
case RADIO_CONST_CHANNEL_MAX:
*value = CC2538_RF_CHANNEL_MAX;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MIN:
*value = OUTPUT_POWER_MIN;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MAX:
*value = OUTPUT_POWER_MAX;
return RADIO_RESULT_OK;
case RADIO_CONST_PHY_OVERHEAD:
*value = (radio_value_t)3; /* 1 len byte, 2 bytes CRC */
return RADIO_RESULT_OK;
case RADIO_CONST_BYTE_AIR_TIME:
*value = (radio_value_t)32; /* 250kbps data rate. One byte = 32us.*/
return RADIO_RESULT_OK;
case RADIO_CONST_DELAY_BEFORE_TX:
*value = (radio_value_t)CC2538_DELAY_BEFORE_TX;
return RADIO_RESULT_OK;
case RADIO_CONST_DELAY_BEFORE_RX:
*value = (radio_value_t)CC2538_DELAY_BEFORE_RX;
return RADIO_RESULT_OK;
case RADIO_CONST_DELAY_BEFORE_DETECT:
*value = (radio_value_t)CC2538_DELAY_BEFORE_DETECT;
return RADIO_RESULT_OK;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
}
/*---------------------------------------------------------------------------*/
static radio_result_t
set_value(radio_param_t param, radio_value_t value)
{
switch(param) {
case RADIO_PARAM_POWER_MODE:
if(value == RADIO_POWER_MODE_ON) {
on();
return RADIO_RESULT_OK;
}
if(value == RADIO_POWER_MODE_OFF) {
off();
return RADIO_RESULT_OK;
}
if(value == RADIO_POWER_MODE_CARRIER_ON ||
value == RADIO_POWER_MODE_CARRIER_OFF) {
set_test_mode((value == RADIO_POWER_MODE_CARRIER_ON), 0);
return RADIO_RESULT_OK;
}
return RADIO_RESULT_INVALID_VALUE;
case RADIO_PARAM_CHANNEL:
if(value < CC2538_RF_CHANNEL_MIN ||
value > CC2538_RF_CHANNEL_MAX) {
return RADIO_RESULT_INVALID_VALUE;
}
set_channel(value);
return RADIO_RESULT_OK;
case RADIO_PARAM_PAN_ID:
set_pan_id(value & 0xffff);
return RADIO_RESULT_OK;
case RADIO_PARAM_16BIT_ADDR:
set_short_addr(value & 0xffff);
return RADIO_RESULT_OK;
case RADIO_PARAM_RX_MODE:
if(value & ~(RADIO_RX_MODE_ADDRESS_FILTER |
RADIO_RX_MODE_AUTOACK |
RADIO_RX_MODE_POLL_MODE)) {
return RADIO_RESULT_INVALID_VALUE;
}
set_frame_filtering((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0);
set_auto_ack((value & RADIO_RX_MODE_AUTOACK) != 0);
set_poll_mode((value & RADIO_RX_MODE_POLL_MODE) != 0);
return RADIO_RESULT_OK;
case RADIO_PARAM_TX_MODE:
if(value & ~(RADIO_TX_MODE_SEND_ON_CCA)) {
return RADIO_RESULT_INVALID_VALUE;
}
set_send_on_cca((value & RADIO_TX_MODE_SEND_ON_CCA) != 0);
return RADIO_RESULT_OK;
case RADIO_PARAM_TXPOWER:
if(value < OUTPUT_POWER_MIN || value > OUTPUT_POWER_MAX) {
return RADIO_RESULT_INVALID_VALUE;
}
set_tx_power(value);
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
set_cca_threshold(value);
return RADIO_RESULT_OK;
case RADIO_PARAM_SHR_SEARCH:
set_shr_search(value);
return RADIO_RESULT_OK;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
}
/*---------------------------------------------------------------------------*/
static radio_result_t
get_object(radio_param_t param, void *dest, size_t size)
{
uint8_t *target;
int i;
if(param == RADIO_PARAM_64BIT_ADDR) {
if(size != 8 || !dest) {
return RADIO_RESULT_INVALID_VALUE;
}
target = dest;
for(i = 0; i < 8; i++) {
target[i] = ((uint32_t *)RFCORE_FFSM_EXT_ADDR0)[7 - i] & 0xFF;
}
return RADIO_RESULT_OK;
}
if(param == RADIO_PARAM_LAST_PACKET_TIMESTAMP) {
if(size != sizeof(rtimer_clock_t) || !dest) {
return RADIO_RESULT_INVALID_VALUE;
}
*(rtimer_clock_t *)dest = get_sfd_timestamp();
return RADIO_RESULT_OK;
}
#if MAC_CONF_WITH_TSCH
if(param == RADIO_CONST_TSCH_TIMING) {
if(size != sizeof(uint16_t *) || !dest) {
return RADIO_RESULT_INVALID_VALUE;
}
/* Assigned value: a pointer to the TSCH timing in usec */
*(const uint16_t **)dest = tsch_timeslot_timing_us_10000;
return RADIO_RESULT_OK;
}
#endif /* MAC_CONF_WITH_TSCH */
return RADIO_RESULT_NOT_SUPPORTED;
}
/*---------------------------------------------------------------------------*/
static radio_result_t
set_object(radio_param_t param, const void *src, size_t size)
{
int i;
if(param == RADIO_PARAM_64BIT_ADDR) {
if(size != 8 || !src) {
return RADIO_RESULT_INVALID_VALUE;
}
for(i = 0; i < 8; i++) {
((uint32_t *)RFCORE_FFSM_EXT_ADDR0)[i] = ((uint8_t *)src)[7 - i];
}
return RADIO_RESULT_OK;
}
return RADIO_RESULT_NOT_SUPPORTED;
}
/*---------------------------------------------------------------------------*/
const struct radio_driver cc2538_rf_driver = {
init,
prepare,
transmit,
send,
read,
channel_clear,
receiving_packet,
pending_packet,
on,
off,
get_value,
set_value,
get_object,
set_object
};
/*---------------------------------------------------------------------------*/
/**
* \brief Implementation of the cc2538 RF driver process
*
* This process is started by init(). It simply sits there waiting for
* an event. Upon frame reception, the RX ISR will poll this process.
* Subsequently, the contiki core will generate an event which will
* call this process so that the received frame can be picked up from
* the RF RX FIFO
*
*/
PROCESS_THREAD(cc2538_rf_process, ev, data)
{
int len;
PROCESS_BEGIN();
while(1) {
/* Only if we are not in poll mode oder we are in poll mode and transceiver has to be reset */
PROCESS_YIELD_UNTIL((!poll_mode || (poll_mode && (rf_flags & RF_MUST_RESET))) && (ev == PROCESS_EVENT_POLL));
if(!poll_mode) {
packetbuf_clear();
len = read(packetbuf_dataptr(), PACKETBUF_SIZE);
if(len > 0) {
packetbuf_set_datalen(len);
NETSTACK_MAC.input();
}
}
/* If we were polled due to an RF error, reset the transceiver */
if(rf_flags & RF_MUST_RESET) {
uint8_t was_on;
rf_flags = 0;
/* save state so we know if to switch on again after re-init */
if((REG(RFCORE_XREG_FSMSTAT0) & RFCORE_XREG_FSMSTAT0_FSM_FFCTRL_STATE) == 0) {
was_on = 0;
} else {
was_on = 1;
}
off();
init();
if(was_on) {
/* switch back on */
on();
}
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
/**
* \brief The cc2538 RF RX/TX ISR
*
* This is the interrupt service routine for all RF interrupts relating
* to RX and TX. Error conditions are handled by cc2538_rf_err_isr().
* Currently, we only acknowledge the FIFOP interrupt source.
*/
void
cc2538_rf_rx_tx_isr(void)
{
if(!poll_mode) {
process_poll(&cc2538_rf_process);
}
/* We only acknowledge FIFOP so we can safely wipe out the entire SFR */
REG(RFCORE_SFR_RFIRQF0) = 0;
}
/*---------------------------------------------------------------------------*/
/**
* \brief The cc2538 RF Error ISR
*
* This is the interrupt service routine for all RF errors. We
* acknowledge every error type and instead of trying to be smart and
* act differently depending on error condition, we simply reset the
* transceiver. RX FIFO overflow is an exception, we ignore this error
* since read() handles it anyway.
*
* However, we don't want to reset within this ISR. If the error occurs
* while we are reading a frame out of the FIFO, trashing the FIFO in
* the middle of read(), would result in further errors (RX underflows).
*
* Instead, we set a flag and poll the driver process. The process will
* reset the transceiver without any undesirable consequences.
*/
void
cc2538_rf_err_isr(void)
{
LOG_ERR("Error 0x%08lx occurred\n", REG(RFCORE_SFR_RFERRF));
/* If the error is not an RX FIFO overflow, set a flag */
if(REG(RFCORE_SFR_RFERRF) != RFCORE_SFR_RFERRF_RXOVERF) {
rf_flags |= RF_MUST_RESET;
}
REG(RFCORE_SFR_RFERRF) = 0;
process_poll(&cc2538_rf_process);
}
/*---------------------------------------------------------------------------*/
/** @} */