nes-proj/cpu/stm32w108/cfs-coffee-arch.c

534 lines
12 KiB
C

/*
* Copyright (c) 2009, Swedish Institute of Computer Science
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
/**
* \file
* Coffee architecture-dependent functionality for the STM32W108-based mb851
* platform.
* \author
* Salvatore Pitrulli <salvopitru@users.sourceforge.net>
*/
#include "cfs-coffee-arch.h"
#define DEBUG 1
#if DEBUG
#include <stdio.h>
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
#define TESTCOFFEE 1
#define DEBUG_CFS 1
#if TESTCOFFEE
#if DEBUG_CFS
#include <stdio.h>
#define PRINTF_CFS(...) printf(__VA_ARGS__)
#else
#define PRINTF_CFS(...)
#endif
#include "cfs/cfs.h"
#include "cfs/cfs-coffee.h"
#include "lib/crc16.h"
#include "lib/random.h"
#include <stdio.h>
#define FAIL(x) PRINTF("FAILED\n");error = (x); goto end;
#define FILE_SIZE 512
int
coffee_file_test(void)
{
int error;
int wfd, rfd, afd;
unsigned char buf[256], buf2[11];
int r, i, j, total_read;
unsigned offset;
cfs_remove("T1");
cfs_remove("T2");
cfs_remove("T3");
cfs_remove("T4");
cfs_remove("T5");
wfd = rfd = afd = -1;
for(r = 0; r < sizeof(buf); r++) {
buf[r] = r;
}
PRINTF("TEST 1\n");
/* Test 1: Open for writing. */
wfd = cfs_open("T1", CFS_WRITE);
if(wfd < 0) {
FAIL(-1);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("2\n");
/* Test 2: Write buffer. */
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-2);
} else if(r < sizeof(buf)) {
FAIL(-3);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("3\n");
/* Test 3: Deny reading. */
r = cfs_read(wfd, buf, sizeof(buf));
if(r >= 0) {
FAIL(-4);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("4\n");
/* Test 4: Open for reading. */
rfd = cfs_open("T1", CFS_READ);
if(rfd < 0) {
FAIL(-5);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("5\n");
/* Test 5: Write to read-only file. */
r = cfs_write(rfd, buf, sizeof(buf));
if(r >= 0) {
FAIL(-6);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("7\n");
/* Test 7: Read the buffer written in Test 2. */
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-8);
} else if(r < sizeof(buf)) {
PRINTF_CFS("r=%d\n", r);
FAIL(-9);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("8\n");
/* Test 8: Verify that the buffer is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != r) {
PRINTF_CFS("r=%d. buf[r]=%d\n", r, buf[r]);
FAIL(-10);
}
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("9\n");
/* Test 9: Seek to beginning. */
if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-11);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("10\n");
/* Test 10: Write to the log. */
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-12);
} else if(r < sizeof(buf)) {
FAIL(-13);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("11\n");
/* Test 11: Read the data from the log. */
cfs_seek(rfd, 0, CFS_SEEK_SET);
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-14);
} else if(r < sizeof(buf)) {
FAIL(-15);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("12\n");
/* Test 12: Verify that the data is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != r) {
FAIL(-16);
}
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("13\n");
/* Test 13: Write a reversed buffer to the file. */
for(r = 0; r < sizeof(buf); r++) {
buf[r] = sizeof(buf) - r - 1;
}
if(cfs_seek(wfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-17);
}
r = cfs_write(wfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-18);
} else if(r < sizeof(buf)) {
FAIL(-19);
}
if(cfs_seek(rfd, 0, CFS_SEEK_SET) != 0) {
FAIL(-20);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("14\n");
/* Test 14: Read the reversed buffer. */
cfs_seek(rfd, 0, CFS_SEEK_SET);
memset(buf, 0, sizeof(buf));
r = cfs_read(rfd, buf, sizeof(buf));
if(r < 0) {
FAIL(-21);
} else if(r < sizeof(buf)) {
PRINTF_CFS("r = %d\n", r);
FAIL(-22);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("15\n");
/* Test 15: Verify that the data is correct. */
for(r = 0; r < sizeof(buf); r++) {
if(buf[r] != sizeof(buf) - r - 1) {
FAIL(-23);
}
}
cfs_close(rfd);
cfs_close(wfd);
if(cfs_coffee_reserve("T2", FILE_SIZE) < 0) {
FAIL(-24);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("16\n");
/* Test 16: Test multiple writes at random offset. */
for(r = 0; r < 100; r++) {
wfd = cfs_open("T2", CFS_WRITE | CFS_READ);
if(wfd < 0) {
FAIL(-25);
}
offset = random_rand() % FILE_SIZE;
for(r = 0; r < sizeof(buf); r++) {
buf[r] = r;
}
if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) {
FAIL(-26);
}
if(cfs_write(wfd, buf, sizeof(buf)) != sizeof(buf)) {
FAIL(-27);
}
if(cfs_seek(wfd, offset, CFS_SEEK_SET) != offset) {
FAIL(-28);
}
memset(buf, 0, sizeof(buf));
if(cfs_read(wfd, buf, sizeof(buf)) != sizeof(buf)) {
FAIL(-29);
}
for(i = 0; i < sizeof(buf); i++) {
if(buf[i] != i) {
PRINTF_CFS("buf[%d] != %d\n", i, buf[i]);
FAIL(-30);
}
}
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("17\n");
/* Test 17: Append data to the same file many times. */
#define APPEND_BYTES 3000
#define BULK_SIZE 10
for (i = 0; i < APPEND_BYTES; i += BULK_SIZE) {
afd = cfs_open("T3", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-31);
}
for (j = 0; j < BULK_SIZE; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE)) != BULK_SIZE) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-32);
}
cfs_close(afd);
}
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("18\n");
/* Test 18: Read back the data written in Test 17 and verify that it
is correct. */
afd = cfs_open("T3", CFS_READ);
if(afd < 0) {
FAIL(-33);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
FAIL(-34);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-35 r=%d\n",r);
FAIL(-35);
}
if(total_read != APPEND_BYTES) {
PRINTF_CFS("FAIL:-35 total_read=%d\n",total_read);
FAIL(-35);
}
cfs_close(afd);
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("19\n");
/***************T4********************/
/* file T4 and T5 writing forces to use garbage collector in greedy mode
* this test is designed for 10kb of file system
* */
#define APPEND_BYTES_1 2000
#define BULK_SIZE_1 10
for (i = 0; i < APPEND_BYTES_1; i += BULK_SIZE_1) {
afd = cfs_open("T4", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-36);
}
for (j = 0; j < BULK_SIZE_1; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE_1)) != BULK_SIZE_1) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-37);
}
cfs_close(afd);
}
afd = cfs_open("T4", CFS_READ);
if(afd < 0) {
FAIL(-38);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
PRINTF_CFS("FAIL:-39, total_read=%d r=%d\n",total_read,r);
FAIL(-39);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-40 r=%d\n",r);
FAIL(-40);
}
if(total_read != APPEND_BYTES_1) {
PRINTF_CFS("FAIL:-41 total_read=%d\n",total_read);
FAIL(-41);
}
cfs_close(afd);
/***************T5********************/
PRINTF("PASSED\n");
PRINTF("TEST ");
PRINTF("20\n");
#define APPEND_BYTES_2 1000
#define BULK_SIZE_2 10
for (i = 0; i < APPEND_BYTES_2; i += BULK_SIZE_2) {
afd = cfs_open("T5", CFS_WRITE | CFS_APPEND);
if (afd < 0) {
FAIL(-42);
}
for (j = 0; j < BULK_SIZE_2; j++) {
buf[j] = 1 + ((i + j) & 0x7f);
}
if ((r = cfs_write(afd, buf, BULK_SIZE_2)) != BULK_SIZE_2) {
PRINTF_CFS("Count:%d, r=%d\n", i, r);
FAIL(-43);
}
cfs_close(afd);
}
afd = cfs_open("T5", CFS_READ);
if(afd < 0) {
FAIL(-44);
}
total_read = 0;
while((r = cfs_read(afd, buf2, sizeof(buf2))) > 0) {
for(j = 0; j < r; j++) {
if(buf2[j] != 1 + ((total_read + j) & 0x7f)) {
PRINTF_CFS("FAIL:-45, total_read=%d r=%d\n",total_read,r);
FAIL(-45);
}
}
total_read += r;
}
if(r < 0) {
PRINTF_CFS("FAIL:-46 r=%d\n",r);
FAIL(-46);
}
if(total_read != APPEND_BYTES_2) {
PRINTF_CFS("FAIL:-47 total_read=%d\n",total_read);
FAIL(-47);
}
cfs_close(afd);
PRINTF("PASSED\n");
error = 0;
end:
cfs_close(wfd); cfs_close(rfd); cfs_close(afd);
return error;
}
#endif /* TESTCOFFEE */
void stm32w_flash_read(int32u address, void * data, int32u length)
{
int8u * pdata = (int8u *)address;
ENERGEST_ON(ENERGEST_TYPE_FLASH_READ);
memcpy(data, pdata, length);
ENERGEST_OFF(ENERGEST_TYPE_FLASH_READ);
}
void stm32w_flash_erase(int8u sector)
{
//halInternalFlashErase(MFB_PAGE_ERASE, COFFEE_START + (sector) * COFFEE_SECTOR_SIZE);
int16u data = 0;
int32u addr = COFFEE_START + (sector) * COFFEE_SECTOR_SIZE;
int32u end = addr + COFFEE_SECTOR_SIZE;
/* This prevents from accidental write to CIB. */
if (!(addr >= MFB_BOTTOM && end <= MFB_TOP + 1)) {
return;
}
for(; addr < end; addr += 2){
halInternalFlashWrite(addr, &data, 1);
}
}
// Allocates a buffer of FLASH_PAGE_SIZE bytes statically (rather than on the stack).
#ifndef STATIC_FLASH_BUFFER
#define STATIC_FLASH_BUFFER 1
#endif
void stm32w_flash_write(int32u address, const void * data, int32u length)
{
const int32u end = address + length;
int32u i;
int32u next_page, curr_page;
int16u offset;
#if STATIC_FLASH_BUFFER
static int8u buf[FLASH_PAGE_SIZE];
#else
int8u buf[FLASH_PAGE_SIZE];
#endif
for(i = address; i < end;) {
next_page = (i | (FLASH_PAGE_SIZE-1)) + 1;
curr_page = i & ~(FLASH_PAGE_SIZE-1);
offset = i-curr_page;
if(next_page > end) {
next_page = end;
}
// Read a page from flash and put it into a mirror buffer.
stm32w_flash_read(curr_page, buf, FLASH_PAGE_SIZE);
// Update flash mirror data with new data.
memcpy(buf + offset, data, next_page - i);
// Erase flash page.
ENERGEST_ON(ENERGEST_TYPE_FLASH_WRITE);
halInternalFlashErase(MFB_PAGE_ERASE, i);
// Write modified data form mirror buffer into the flash.
halInternalFlashWrite(curr_page, (int16u *)buf, FLASH_PAGE_SIZE/2);
ENERGEST_OFF(ENERGEST_TYPE_FLASH_WRITE);
data = (uint8_t *)data + next_page - i;
i = next_page;
}
}