nes-proj/cpu/stm32w108/hal/micro/cortexm3/uart.c
2010-10-25 09:03:38 +00:00

260 lines
6.3 KiB
C

/** @file hal/micro/cortexm3/uart.c
* @brief STM32W uart drivers, supporting IAR's standard library
* IO routines.
*
* <!--(C) COPYRIGHT 2010 STMicroelectronics. All rights reserved. -->
*/
#include PLATFORM_HEADER
#include "hal/micro/micro-common.h"
#include "hal/micro/cortexm3/micro-common.h"
#include "uart.h"
#ifdef __GNUC__
#include <sys/stat.h>
#include <stdio.h>
#define _LLIO_STDIN ((int) stdin)
#define _LLIO_STDOUT ((int) stdout)
#define _LLIO_STDERR ((int) stderr)
#define _LLIO_ERROR (-1)
#define __write _write
#define __read _read
#undef putchar
void __io_putchar( char c );
int putchar (int c)
{
__io_putchar((char) c);
return c;
}
#endif
#define RECEIVE_QUEUE_SIZE (128)
int8u rxQ[RECEIVE_QUEUE_SIZE];
int16u rxHead;
int16u rxTail;
int16u rxUsed;
//////////////////////////////////////////////////////////////////////////////
// Initialization
void uartInit(int32u baudrate, int8u databits, SerialParity parity, int8u stopbits)
{
int32u tempcfg;
int32u tmp;
assert( (baudrate >= 300) && (baudrate <=921600) );
tmp = (2*12000000L + baudrate/2) / baudrate;
SC1_UARTFRAC = tmp & 1;
SC1_UARTPER = tmp / 2;
if(databits == 7) {
tempcfg = 0;
} else {
tempcfg = SC_UART8BIT;
}
if (parity == PARITY_ODD) {
tempcfg |= SC_UARTPAR | SC_UARTODD;
} else if( parity == PARITY_EVEN ) {
tempcfg |= SC_UARTPAR;
}
if ((stopbits & 0x0F) >= 2) {
tempcfg |= SC_UART2STP;
}
SC1_UARTCFG = tempcfg;
SC1_MODE = SC1_MODE_UART;
rxHead=0;
rxTail=0;
rxUsed=0;
halGpioConfig(PORTB_PIN(1),GPIOCFG_OUT_ALT);
halGpioConfig(PORTB_PIN(2),GPIOCFG_IN);
// Make the RX Valid interrupt level sensitive (instead of edge)
SC1_INTMODE = SC_RXVALLEVEL;
// Enable just RX interrupts; TX interrupts are controlled separately
INT_SC1CFG |= (INT_SCRXVAL |
INT_SCRXOVF |
INT_SC1FRMERR |
INT_SC1PARERR);
INT_SC1FLAG = 0xFFFF; // Clear any stale interrupts
INT_CFGSET = INT_SC1;
}
//////////////////////////////////////////////////////////////////////////////
// Transmit
// IAR Standard library hook for serial output
size_t __write(int handle, const unsigned char * buffer, size_t size)
{
size_t nChars = 0;
/* This template only writes to "standard out" and "standard err",
* for all other file handles it returns failure. */
if (handle != _LLIO_STDOUT && handle != _LLIO_STDERR) {
return _LLIO_ERROR;
}
if (buffer == 0) {
// This means that we should flush internal buffers.
//spin until TX complete (TX is idle)
while ((SC1_UARTSTAT&SC_UARTTXIDLE)!=SC_UARTTXIDLE) {}
return 0;
}
// ensure port is configured for UART
if(SC1_MODE != SC1_MODE_UART) {
return _LLIO_ERROR;
}
while(size--) {
//spin until data register has room for more data
while ((SC1_UARTSTAT&SC_UARTTXFREE)!=SC_UARTTXFREE) {}
SC1_DATA = *buffer;
buffer++;
++nChars;
}
return nChars;
}
#ifdef __GNUC__
int fflush (FILE *f)
#endif
#ifdef __ICCARM__
size_t fflush(int handle)
#endif
{
return __write(_LLIO_STDOUT, NULL, 0);
}
static void halInternalUart1TxIsr(void)
{
// Nothing for now, as ouput is blocking from the __write function
}
//////////////////////////////////////////////////////////////////////////////
// Receive
// IAR Standard library hook for serial input
size_t __read(int handle, unsigned char * buffer, size_t size)
{
int nChars = 0;
/* This template only reads from "standard in", for all other file
* handles it returns failure. */
if (handle != _LLIO_STDIN)
{
return _LLIO_ERROR;
}
for(nChars = 0; (rxUsed>0) && (nChars < size); nChars++) {
ATOMIC(
*buffer++ = rxQ[rxTail];
rxTail = (rxTail+1) % RECEIVE_QUEUE_SIZE;
rxUsed--;
)
}
return nChars;
}
static void halInternalUart1RxIsr(void)
{
// At present we really don't care which interrupt(s)
// occurred, just that one did. Loop reading RXVALID
// data, processing any errors noted
// along the way.
while ( SC1_UARTSTAT & SC_UARTRXVAL ) {
int8u errors = SC1_UARTSTAT & (SC_UARTFRMERR |
SC_UARTRXOVF |
SC_UARTPARERR );
int8u incoming = (int8u) SC1_DATA;
if ( (errors == 0) && (rxUsed < (RECEIVE_QUEUE_SIZE-1)) ) {
rxQ[rxHead] = incoming;
rxHead = (rxHead+1) % RECEIVE_QUEUE_SIZE;
rxUsed++;
} else {
// IAR standard library doesn't allow for any error handling in the
// case of rx errors or not having space in the receive queue, so the
// errors are just silently dropped.
}
} // end of while ( SC1_UARTSTAT & SC1_UARTRXVAL )
}
//////////////////////////////////////////////////////////////////////////////
// Interrupts
void halSc1Isr(void)
{
int32u interrupt;
//this read and mask is performed in two steps otherwise the compiler
//will complain about undefined order of volatile access
interrupt = INT_SC1FLAG;
interrupt &= INT_SC1CFG;
while (interrupt != 0) {
INT_SC1FLAG = interrupt; // acknowledge the interrupts early
// RX events
if ( interrupt & (INT_SCRXVAL | // RX has data
INT_SCRXOVF | // RX Overrun error
INT_SC1FRMERR | // RX Frame error
INT_SC1PARERR ) // RX Parity error
) {
halInternalUart1RxIsr();
}
// TX events
if ( interrupt & (INT_SCTXFREE | // TX has room
INT_SCTXIDLE ) // TX idle (more room)
) {
halInternalUart1TxIsr();
}
interrupt = INT_SC1FLAG;
interrupt &= INT_SC1CFG;
}
}
/*******************************************************************************
* Function Name : __io_getcharNonBlocking
* Description : Non blocking read
* Input : none
* Output : dataByte: buffer containing the read byte if any
* Return : TRUE if there is a data, FALSE otherwise
*******************************************************************************/
boolean __io_getcharNonBlocking(int8u *data)
{
if (__read(_LLIO_STDIN,data,1))
return TRUE;
else
return FALSE;
}/* end serialReadByte() */
void __io_putchar( char c )
{
__write(_LLIO_STDOUT, (unsigned char *)&c, 1);
}
int __io_getchar()
{
unsigned char c;
__read(_LLIO_STDIN, &c, 1);
return (int)(c);
}
void __io_flush( void )
{
__write(_LLIO_STDOUT, NULL, 0);
}