nes-proj/os/net/ipv6/tcpip.c
2018-09-07 16:39:53 +01:00

844 lines
23 KiB
C

/*
* Copyright (c) 2004, Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*/
/**
* \file
* Core of the TCP/IP stack, handles input/output/routing
*
* \author Adam Dunkels <adam@sics.se>\author
* \author Mathilde Durvy <mdurvy@cisco.com> (IPv6 related code)
* \author Julien Abeille <jabeille@cisco.com> (IPv6 related code)
*/
#include "contiki.h"
#include "contiki-net.h"
#include "net/ipv6/uip-packetqueue.h"
#include "net/ipv6/uip-nd6.h"
#include "net/ipv6/uip-ds6.h"
#include "net/ipv6/uip-ds6-nbr.h"
#include "net/linkaddr.h"
#include "net/routing/routing.h"
#include <string.h>
/* Log configuration */
#include "sys/log.h"
#define LOG_MODULE "TCP/IP"
#define LOG_LEVEL LOG_LEVEL_TCPIP
#define UIP_ICMP_BUF ((struct uip_icmp_hdr *)&uip_buf[UIP_LLIPH_LEN + uip_ext_len])
#define UIP_IP_BUF ((struct uip_ip_hdr *)&uip_buf[UIP_LLH_LEN])
#define UIP_TCP_BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN])
#ifdef UIP_FALLBACK_INTERFACE
extern struct uip_fallback_interface UIP_FALLBACK_INTERFACE;
#endif
process_event_t tcpip_event;
#if UIP_CONF_ICMP6
process_event_t tcpip_icmp6_event;
#endif /* UIP_CONF_ICMP6 */
/* Periodic check of active connections. */
static struct etimer periodic;
#if UIP_CONF_IPV6_REASSEMBLY
/* Timer for reassembly. */
extern struct etimer uip_reass_timer;
#endif
#if UIP_TCP
/**
* \internal Structure for holding a TCP port and a process ID.
*/
struct listenport {
uint16_t port;
struct process *p;
};
static struct internal_state {
struct listenport listenports[UIP_LISTENPORTS];
struct process *p;
} s;
#endif
enum {
TCP_POLL,
UDP_POLL,
PACKET_INPUT
};
/*---------------------------------------------------------------------------*/
static void
init_appstate(uip_tcp_appstate_t *as, void *state)
{
as->p = PROCESS_CURRENT();
as->state = state;
}
/*---------------------------------------------------------------------------*/
uint8_t
tcpip_output(const uip_lladdr_t *a)
{
int ret;
/* Tag Traffic Class if we are using TC for variable retrans */
#if UIP_TAG_TC_WITH_VARIABLE_RETRANSMISSIONS
if(uipbuf_get_attr(UIPBUF_ATTR_MAX_MAC_TRANSMISSIONS) !=
UIP_MAX_MAC_TRANSMISSIONS_UNDEFINED) {
LOG_INFO("Tagging TC with retrans: %d\n", uipbuf_get_attr(UIPBUF_ATTR_MAX_MAC_TRANSMISSIONS));
/* Encapsulate the MAC transmission limit in the Traffic Class field */
UIP_IP_BUF->vtc = 0x60 | (UIP_TC_MAC_TRANSMISSION_COUNTER_BIT >> 4);
UIP_IP_BUF->tcflow =
uipbuf_get_attr(UIPBUF_ATTR_MAX_MAC_TRANSMISSIONS) << 4;
}
#endif
if(netstack_process_ip_callback(NETSTACK_IP_OUTPUT, (const linkaddr_t *)a) ==
NETSTACK_IP_PROCESS) {
ret = NETSTACK_NETWORK.output((const linkaddr_t *) a);
return ret;
} else {
/* Ok, ignore and drop... */
uip_clear_buf();
return 0;
}
}
PROCESS(tcpip_process, "TCP/IP stack");
/*---------------------------------------------------------------------------*/
#if UIP_TCP
static void
start_periodic_tcp_timer(void)
{
if(etimer_expired(&periodic)) {
etimer_restart(&periodic);
}
}
#endif /* UIP_TCP */
/*---------------------------------------------------------------------------*/
static void
check_for_tcp_syn(void)
{
#if UIP_TCP
/* This is a hack that is needed to start the periodic TCP timer if
an incoming packet contains a SYN: since uIP does not inform the
application if a SYN arrives, we have no other way of starting
this timer. This function is called for every incoming IP packet
to check for such SYNs. */
#define TCP_SYN 0x02
if(UIP_IP_BUF->proto == UIP_PROTO_TCP &&
(UIP_TCP_BUF->flags & TCP_SYN) == TCP_SYN) {
start_periodic_tcp_timer();
}
#endif /* UIP_TCP */
}
/*---------------------------------------------------------------------------*/
static void
packet_input(void)
{
if(uip_len > 0) {
LOG_INFO("input: received %u bytes\n", uip_len);
check_for_tcp_syn();
#if UIP_TAG_TC_WITH_VARIABLE_RETRANSMISSIONS
{
uint8_t traffic_class = (UIP_IP_BUF->vtc << 4) | (UIP_IP_BUF->tcflow >> 4);
if(traffic_class & UIP_TC_MAC_TRANSMISSION_COUNTER_BIT) {
uint8_t max_mac_transmissions = traffic_class & UIP_TC_MAC_TRANSMISSION_COUNTER_MASK;
uipbuf_set_attr(UIPBUF_ATTR_MAX_MAC_TRANSMISSIONS, max_mac_transmissions);
LOG_INFO("Received packet tagged with TC retrans: %d (%x)",
max_mac_transmissions, traffic_class);
}
}
#endif /* UIP_TAG_TC_WITH_VARIABLE_RETRANSMISSIONS */
uip_input();
if(uip_len > 0) {
tcpip_ipv6_output();
}
}
}
/*---------------------------------------------------------------------------*/
#if UIP_TCP
#if UIP_ACTIVE_OPEN
struct uip_conn *
tcp_connect(const uip_ipaddr_t *ripaddr, uint16_t port, void *appstate)
{
struct uip_conn *c;
c = uip_connect(ripaddr, port);
if(c == NULL) {
return NULL;
}
init_appstate(&c->appstate, appstate);
tcpip_poll_tcp(c);
return c;
}
#endif /* UIP_ACTIVE_OPEN */
/*---------------------------------------------------------------------------*/
void
tcp_unlisten(uint16_t port)
{
unsigned char i;
struct listenport *l;
l = s.listenports;
for(i = 0; i < UIP_LISTENPORTS; ++i) {
if(l->port == port &&
l->p == PROCESS_CURRENT()) {
l->port = 0;
uip_unlisten(port);
break;
}
++l;
}
}
/*---------------------------------------------------------------------------*/
void
tcp_listen(uint16_t port)
{
unsigned char i;
struct listenport *l;
l = s.listenports;
for(i = 0; i < UIP_LISTENPORTS; ++i) {
if(l->port == 0) {
l->port = port;
l->p = PROCESS_CURRENT();
uip_listen(port);
break;
}
++l;
}
}
/*---------------------------------------------------------------------------*/
void
tcp_attach(struct uip_conn *conn, void *appstate)
{
init_appstate(&conn->appstate, appstate);
}
#endif /* UIP_TCP */
/*---------------------------------------------------------------------------*/
#if UIP_UDP
void
udp_attach(struct uip_udp_conn *conn, void *appstate)
{
init_appstate(&conn->appstate, appstate);
}
/*---------------------------------------------------------------------------*/
struct uip_udp_conn *
udp_new(const uip_ipaddr_t *ripaddr, uint16_t port, void *appstate)
{
struct uip_udp_conn *c = uip_udp_new(ripaddr, port);
if(c == NULL) {
return NULL;
}
init_appstate(&c->appstate, appstate);
return c;
}
/*---------------------------------------------------------------------------*/
struct uip_udp_conn *
udp_broadcast_new(uint16_t port, void *appstate)
{
uip_ipaddr_t addr;
struct uip_udp_conn *conn;
uip_create_linklocal_allnodes_mcast(&addr);
conn = udp_new(&addr, port, appstate);
if(conn != NULL) {
udp_bind(conn, port);
}
return conn;
}
#endif /* UIP_UDP */
/*---------------------------------------------------------------------------*/
#if UIP_CONF_ICMP6
uint8_t
icmp6_new(void *appstate) {
if(uip_icmp6_conns.appstate.p == PROCESS_NONE) {
init_appstate(&uip_icmp6_conns.appstate, appstate);
return 0;
}
return 1;
}
void
tcpip_icmp6_call(uint8_t type)
{
if(uip_icmp6_conns.appstate.p != PROCESS_NONE) {
/* XXX: This is a hack that needs to be updated. Passing a pointer (&type)
like this only works with process_post_synch. */
process_post_synch(uip_icmp6_conns.appstate.p, tcpip_icmp6_event, &type);
}
return;
}
#endif /* UIP_CONF_ICMP6 */
/*---------------------------------------------------------------------------*/
static void
eventhandler(process_event_t ev, process_data_t data)
{
#if UIP_TCP
unsigned char i;
register struct listenport *l;
#endif /*UIP_TCP*/
struct process *p;
switch(ev) {
case PROCESS_EVENT_EXITED:
/* This is the event we get if a process has exited. We go through
the TCP/IP tables to see if this process had any open
connections or listening TCP ports. If so, we'll close those
connections. */
p = (struct process *)data;
#if UIP_TCP
l = s.listenports;
for(i = 0; i < UIP_LISTENPORTS; ++i) {
if(l->p == p) {
uip_unlisten(l->port);
l->port = 0;
l->p = PROCESS_NONE;
}
++l;
}
{
struct uip_conn *cptr;
for(cptr = &uip_conns[0]; cptr < &uip_conns[UIP_TCP_CONNS]; ++cptr) {
if(cptr->appstate.p == p) {
cptr->appstate.p = PROCESS_NONE;
cptr->tcpstateflags = UIP_CLOSED;
}
}
}
#endif /* UIP_TCP */
#if UIP_UDP
{
struct uip_udp_conn *cptr;
for(cptr = &uip_udp_conns[0];
cptr < &uip_udp_conns[UIP_UDP_CONNS]; ++cptr) {
if(cptr->appstate.p == p) {
cptr->lport = 0;
}
}
}
#endif /* UIP_UDP */
break;
case PROCESS_EVENT_TIMER:
/* We get this event if one of our timers have expired. */
{
/* Check the clock so see if we should call the periodic uIP
processing. */
if(data == &periodic &&
etimer_expired(&periodic)) {
#if UIP_TCP
for(i = 0; i < UIP_TCP_CONNS; ++i) {
if(uip_conn_active(i)) {
/* Only restart the timer if there are active
connections. */
etimer_restart(&periodic);
uip_periodic(i);
tcpip_ipv6_output();
}
}
#endif /* UIP_TCP */
}
#if UIP_CONF_IPV6_REASSEMBLY
/*
* check the timer for reassembly
*/
if(data == &uip_reass_timer &&
etimer_expired(&uip_reass_timer)) {
uip_reass_over();
tcpip_ipv6_output();
}
#endif /* UIP_CONF_IPV6_REASSEMBLY */
/*
* check the different timers for neighbor discovery and
* stateless autoconfiguration
*/
/*if(data == &uip_ds6_timer_periodic &&
etimer_expired(&uip_ds6_timer_periodic)) {
uip_ds6_periodic();
tcpip_ipv6_output();
}*/
#if !UIP_CONF_ROUTER
if(data == &uip_ds6_timer_rs &&
etimer_expired(&uip_ds6_timer_rs)) {
uip_ds6_send_rs();
tcpip_ipv6_output();
}
#endif /* !UIP_CONF_ROUTER */
if(data == &uip_ds6_timer_periodic &&
etimer_expired(&uip_ds6_timer_periodic)) {
uip_ds6_periodic();
tcpip_ipv6_output();
}
}
break;
#if UIP_TCP
case TCP_POLL:
if(data != NULL) {
uip_poll_conn(data);
tcpip_ipv6_output();
/* Start the periodic polling, if it isn't already active. */
start_periodic_tcp_timer();
}
break;
#endif /* UIP_TCP */
#if UIP_UDP
case UDP_POLL:
if(data != NULL) {
uip_udp_periodic_conn(data);
tcpip_ipv6_output();
}
break;
#endif /* UIP_UDP */
case PACKET_INPUT:
packet_input();
break;
};
}
/*---------------------------------------------------------------------------*/
void
tcpip_input(void)
{
if(netstack_process_ip_callback(NETSTACK_IP_INPUT, NULL) ==
NETSTACK_IP_PROCESS) {
process_post_synch(&tcpip_process, PACKET_INPUT, NULL);
} /* else - do nothing and drop */
uip_clear_buf();
}
/*---------------------------------------------------------------------------*/
extern void remove_ext_hdr(void);
/*---------------------------------------------------------------------------*/
static void
output_fallback(void)
{
#ifdef UIP_FALLBACK_INTERFACE
LOG_INFO("fallback: removing ext hdrs & setting proto %d %d\n",
uip_ext_len, *((uint8_t *)UIP_IP_BUF + 40));
remove_ext_hdr();
/* Inform the other end that the destination is not reachable. If it's
* not informed routes might get lost unexpectedly until there's a need
* to send a new packet to the peer */
if(UIP_FALLBACK_INTERFACE.output() < 0) {
LOG_ERR("fallback: output error. Reporting DST UNREACH\n");
uip_icmp6_error_output(ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0);
uip_flags = 0;
tcpip_ipv6_output();
return;
}
#else
LOG_ERR("output: destination off-link and no default route\n");
#endif /* !UIP_FALLBACK_INTERFACE */
}
/*---------------------------------------------------------------------------*/
static void
annotate_transmission(const uip_ipaddr_t *nexthop)
{
#if TCPIP_CONF_ANNOTATE_TRANSMISSIONS
static uint8_t annotate_last;
static uint8_t annotate_has_last = 0;
if(annotate_has_last) {
printf("#L %u 0; red\n", annotate_last);
}
printf("#L %u 1; red\n", nexthop->u8[sizeof(uip_ipaddr_t) - 1]);
annotate_last = nexthop->u8[sizeof(uip_ipaddr_t) - 1];
annotate_has_last = 1;
#endif /* TCPIP_CONF_ANNOTATE_TRANSMISSIONS */
}
/*---------------------------------------------------------------------------*/
static const uip_ipaddr_t*
get_nexthop(uip_ipaddr_t *addr)
{
const uip_ipaddr_t *nexthop;
uip_ds6_route_t *route;
LOG_INFO("output: processing %u bytes packet from ", uip_len);
LOG_INFO_6ADDR(&UIP_IP_BUF->srcipaddr);
LOG_INFO_(" to ");
LOG_INFO_6ADDR(&UIP_IP_BUF->destipaddr);
LOG_INFO_("\n");
if(NETSTACK_ROUTING.ext_header_srh_get_next_hop(addr)) {
LOG_INFO("output: selected next hop from SRH: ");
LOG_INFO_6ADDR(addr);
LOG_INFO_("\n");
return addr;
}
/* We first check if the destination address is on our immediate
link. If so, we simply use the destination address as our
nexthop address. */
if(uip_ds6_is_addr_onlink(&UIP_IP_BUF->destipaddr)) {
LOG_INFO("output: destination is on link\n");
return &UIP_IP_BUF->destipaddr;
}
/* Check if we have a route to the destination address. */
route = uip_ds6_route_lookup(&UIP_IP_BUF->destipaddr);
/* No route was found - we send to the default route instead. */
if(route == NULL) {
nexthop = uip_ds6_defrt_choose();
if(nexthop == NULL) {
output_fallback();
} else {
LOG_INFO("output: no route found, using default route: ");
LOG_INFO_6ADDR(nexthop);
LOG_INFO_("\n");
}
} else {
/* A route was found, so we look up the nexthop neighbor for
the route. */
nexthop = uip_ds6_route_nexthop(route);
/* If the nexthop is dead, for example because the neighbor
never responded to link-layer acks, we drop its route. */
if(nexthop == NULL) {
LOG_ERR("output: found dead route\n");
/* Notifiy the routing protocol that we are about to remove the route */
NETSTACK_ROUTING.drop_route(route);
/* Remove the route */
uip_ds6_route_rm(route);
/* We don't have a nexthop to send the packet to, so we drop it. */
} else {
LOG_INFO("output: found next hop from routing table: ");
LOG_INFO_6ADDR(nexthop);
LOG_INFO_("\n");
}
}
return nexthop;
}
/*---------------------------------------------------------------------------*/
#if UIP_ND6_SEND_NS
static int
queue_packet(uip_ds6_nbr_t *nbr)
{
/* Copy outgoing pkt in the queuing buffer for later transmit. */
#if UIP_CONF_IPV6_QUEUE_PKT
if(uip_packetqueue_alloc(&nbr->packethandle, UIP_DS6_NBR_PACKET_LIFETIME) != NULL) {
memcpy(uip_packetqueue_buf(&nbr->packethandle), UIP_IP_BUF, uip_len);
uip_packetqueue_set_buflen(&nbr->packethandle, uip_len);
return 0;
}
#endif
return 1;
}
#endif
/*---------------------------------------------------------------------------*/
static void
send_queued(uip_ds6_nbr_t *nbr)
{
#if UIP_CONF_IPV6_QUEUE_PKT
/*
* Send the queued packets from here, may not be 100% perfect though.
* This happens in a few cases, for example when instead of receiving a
* NA after sendiong a NS, you receive a NS with SLLAO: the entry moves
* to STALE, and you must both send a NA and the queued packet.
*/
if(uip_packetqueue_buflen(&nbr->packethandle) != 0) {
uip_len = uip_packetqueue_buflen(&nbr->packethandle);
memcpy(UIP_IP_BUF, uip_packetqueue_buf(&nbr->packethandle), uip_len);
uip_packetqueue_free(&nbr->packethandle);
tcpip_output(uip_ds6_nbr_get_ll(nbr));
}
#endif /*UIP_CONF_IPV6_QUEUE_PKT*/
}
/*---------------------------------------------------------------------------*/
static int
send_nd6_ns(const uip_ipaddr_t *nexthop)
{
int err = 1;
#if UIP_ND6_SEND_NS
uip_ds6_nbr_t *nbr = NULL;
if((nbr = uip_ds6_nbr_add(nexthop, NULL, 0, NBR_INCOMPLETE, NBR_TABLE_REASON_IPV6_ND, NULL)) != NULL) {
err = 0;
queue_packet(nbr);
/* RFC4861, 7.2.2:
* "If the source address of the packet prompting the solicitation is the
* same as one of the addresses assigned to the outgoing interface, that
* address SHOULD be placed in the IP Source Address of the outgoing
* solicitation. Otherwise, any one of the addresses assigned to the
* interface should be used."*/
if(uip_ds6_is_my_addr(&UIP_IP_BUF->srcipaddr)){
uip_nd6_ns_output(&UIP_IP_BUF->srcipaddr, NULL, &nbr->ipaddr);
} else {
uip_nd6_ns_output(NULL, NULL, &nbr->ipaddr);
}
stimer_set(&nbr->sendns, uip_ds6_if.retrans_timer / 1000);
nbr->nscount = 1;
/* Send the first NS try from here (multicast destination IP address). */
}
#else
LOG_ERR("output: neighbor not in cache: ");
LOG_ERR_6ADDR(nexthop);
LOG_ERR_("\n");
#endif
return err;
}
/*---------------------------------------------------------------------------*/
void
tcpip_ipv6_output(void)
{
uip_ipaddr_t ipaddr;
uip_ds6_nbr_t *nbr = NULL;
const uip_lladdr_t *linkaddr;
const uip_ipaddr_t *nexthop;
if(uip_len == 0) {
return;
}
if(uip_len > UIP_LINK_MTU) {
LOG_ERR("output: Packet too big");
goto exit;
}
if(uip_is_addr_unspecified(&UIP_IP_BUF->destipaddr)){
LOG_ERR("output: Destination address unspecified");
goto exit;
}
if(!NETSTACK_ROUTING.ext_header_update()) {
/* Packet can not be forwarded */
LOG_ERR("output: routing protocol extension header update error\n");
uip_clear_buf();
return;
}
if(uip_is_addr_mcast(&UIP_IP_BUF->destipaddr)) {
linkaddr = NULL;
goto send_packet;
}
/* We first check if the destination address is one of ours. There is no
* loopback interface -- instead, process this directly as incoming. */
if(uip_ds6_is_my_addr(&UIP_IP_BUF->destipaddr)) {
LOG_INFO("output: sending to ourself\n");
packet_input();
return;
}
/* Look for a next hop */
if((nexthop = get_nexthop(&ipaddr)) == NULL) {
goto exit;
}
annotate_transmission(nexthop);
nbr = uip_ds6_nbr_lookup(nexthop);
#if UIP_ND6_AUTOFILL_NBR_CACHE
if(nbr == NULL) {
/* Neighbor not found in cache? Derive its link-layer address from it's
link-local IPv6, assuming it used autoconfiguration. This is not
standard-compliant but this is a convenient way to keep the
neighbor cache out of the way in cases ND is not used */
uip_lladdr_t lladdr;
uip_ds6_set_lladdr_from_iid(&lladdr, nexthop);
if((nbr = uip_ds6_nbr_add(nexthop, &lladdr,
0, NBR_REACHABLE, NBR_TABLE_REASON_IPV6_ND_AUTOFILL, NULL)) == NULL) {
LOG_ERR("output: failed to autofill neighbor cache for host ");
LOG_ERR_6ADDR(nexthop);
LOG_ERR_(", link-layer addr ");
LOG_ERR_LLADDR((linkaddr_t*)&lladdr);
LOG_ERR_("\n");
goto exit;
}
}
#endif /* UIP_ND6_AUTOFILL_NBR_CACHE */
if(nbr == NULL) {
if(send_nd6_ns(nexthop)) {
LOG_ERR("output: failed to add neighbor to cache\n");
goto exit;
} else {
/* We're sending NS here instead of original packet */
goto send_packet;
}
}
#if UIP_ND6_SEND_NS
if(nbr->state == NBR_INCOMPLETE) {
LOG_ERR("output: nbr cache entry incomplete\n");
queue_packet(nbr);
goto exit;
}
/* Send in parallel if we are running NUD (nbc state is either STALE,
DELAY, or PROBE). See RFC 4861, section 7.3.3 on node behavior. */
if(nbr->state == NBR_STALE) {
nbr->state = NBR_DELAY;
stimer_set(&nbr->reachable, UIP_ND6_DELAY_FIRST_PROBE_TIME);
nbr->nscount = 0;
LOG_INFO("output: nbr cache entry stale moving to delay\n");
}
#endif /* UIP_ND6_SEND_NS */
send_packet:
if(nbr) {
linkaddr = uip_ds6_nbr_get_ll(nbr);
} else {
linkaddr = NULL;
}
LOG_INFO("output: sending to ");
LOG_INFO_LLADDR((linkaddr_t *)linkaddr);
LOG_INFO_("\n");
tcpip_output(linkaddr);
if(nbr) {
send_queued(nbr);
}
exit:
uip_clear_buf();
return;
}
/*---------------------------------------------------------------------------*/
#if UIP_UDP
void
tcpip_poll_udp(struct uip_udp_conn *conn)
{
process_post(&tcpip_process, UDP_POLL, conn);
}
#endif /* UIP_UDP */
/*---------------------------------------------------------------------------*/
#if UIP_TCP
void
tcpip_poll_tcp(struct uip_conn *conn)
{
process_post(&tcpip_process, TCP_POLL, conn);
}
#endif /* UIP_TCP */
/*---------------------------------------------------------------------------*/
void
tcpip_uipcall(void)
{
uip_udp_appstate_t *ts;
#if UIP_UDP
if(uip_conn != NULL) {
ts = &uip_conn->appstate;
} else {
ts = &uip_udp_conn->appstate;
}
#else /* UIP_UDP */
ts = &uip_conn->appstate;
#endif /* UIP_UDP */
#if UIP_TCP
{
unsigned char i;
struct listenport *l;
/* If this is a connection request for a listening port, we must
mark the connection with the right process ID. */
if(uip_connected()) {
l = &s.listenports[0];
for(i = 0; i < UIP_LISTENPORTS; ++i) {
if(l->port == uip_conn->lport &&
l->p != PROCESS_NONE) {
ts->p = l->p;
ts->state = NULL;
break;
}
++l;
}
/* Start the periodic polling, if it isn't already active. */
start_periodic_tcp_timer();
}
}
#endif /* UIP_TCP */
if(ts->p != NULL) {
process_post_synch(ts->p, tcpip_event, ts->state);
}
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(tcpip_process, ev, data)
{
PROCESS_BEGIN();
#if UIP_TCP
memset(s.listenports, 0, UIP_LISTENPORTS*sizeof(*(s.listenports)));
s.p = PROCESS_CURRENT();
#endif
tcpip_event = process_alloc_event();
#if UIP_CONF_ICMP6
tcpip_icmp6_event = process_alloc_event();
#endif /* UIP_CONF_ICMP6 */
etimer_set(&periodic, CLOCK_SECOND / 2);
uip_init();
#ifdef UIP_FALLBACK_INTERFACE
UIP_FALLBACK_INTERFACE.init();
#endif
/* Initialize routing protocol */
NETSTACK_ROUTING.init();
while(1) {
PROCESS_YIELD();
eventhandler(ev, data);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/