nes-proj/cpu/cc26xx-cc13xx/rf-core/rf-core.h
2016-12-11 16:51:47 +00:00

442 lines
19 KiB
C

/*
* Copyright (c) 2015, Texas Instruments Incorporated - http://www.ti.com/
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup cc26xx
* @{
*
* \defgroup rf-core CC13xx/CC26xx RF core
*
* Different flavours of chips of the CC13xx/CC26xx family have different
* radio capability. For example, the CC2650 can operate in IEEE 802.15.4 mode
* at 2.4GHz, but it can also operate in BLE mode. The CC1310 only supports
* sub-ghz mode.
*
* However, there are many radio functionalities that are identical across
* all chips. The rf-core driver provides support for this common functionality
*
* @{
*
* \file
* Header file for the CC13xx/CC26xx RF core driver
*/
/*---------------------------------------------------------------------------*/
#ifndef RF_CORE_H_
#define RF_CORE_H_
/*---------------------------------------------------------------------------*/
#include "contiki-conf.h"
#include "driverlib/rf_common_cmd.h"
#include <stdint.h>
#include <stdbool.h>
/*---------------------------------------------------------------------------*/
/* The channel to use in IEEE or prop mode. */
#ifdef RF_CORE_CONF_CHANNEL
#define RF_CORE_CHANNEL RF_CORE_CONF_CHANNEL
#else
#define RF_CORE_CHANNEL 25
#endif /* RF_CORE_CONF_IEEE_MODE_CHANNEL */
/*---------------------------------------------------------------------------*/
#define RF_CORE_CMD_ERROR 0
#define RF_CORE_CMD_OK 1
/*---------------------------------------------------------------------------*/
/**
* \brief A data strcuture representing the radio's primary mode of operation
*
* The CC13xx / CC26xx radio supports up to potentially 3 modes: IEEE, Prop and
* BLE. Within Contiki, we assume that the radio is by default in one of IEEE
* or Prop in order to support standard 6LoWPAN / .15.4 operation. The BLE
* mode interrupts this so called "primary" mode in order to send BLE adv
* messages. Once BLE is done advertising, we need to be able to restore the
* previous .15.4 mode. Unfortunately, the only way this can be done with
* NETSTACK_RADIO API is by fully power-cycling the radio, which is something
* we do not want to do.
*
* Thus, we declare a secondary data structure for primary mode drivers (IEEE
* or Prop). We use this data structure to issue "soft off" and "back on"
* commands. Soft off in this context means stopping RX (e.g. the respective
* IEEE RX operation), but without shutting down the RF core (which is what
* NETSTACK_RADIO.off() would have done). We then remember what mode we were
* using in order to be able to re-enter RX mode for this mode.
*
* A NETSTACK_RADIO driver will declare those two functions somewhere within
* its module of implementation. During its init() routine, it will notify
* the RF core module so that the latter can abort and restore operations.
*/
typedef struct rf_core_primary_mode_s {
/**
* \brief A pointer to a function used to abort the current radio op
*/
void (*abort)(void);
/**
* \brief A pointer to a function that will restore the previous radio op
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*/
uint8_t (*restore)(void);
} rf_core_primary_mode_t;
/*---------------------------------------------------------------------------*/
/* RF Command status constants - Correspond to values in the CMDSTA register */
#define RF_CORE_CMDSTA_PENDING 0x00
#define RF_CORE_CMDSTA_DONE 0x01
#define RF_CORE_CMDSTA_ILLEGAL_PTR 0x81
#define RF_CORE_CMDSTA_UNKNOWN_CMD 0x82
#define RF_CORE_CMDSTA_UNKNOWN_DIR_CMD 0x83
#define RF_CORE_CMDSTA_CONTEXT_ERR 0x85
#define RF_CORE_CMDSTA_SCHEDULING_ERR 0x86
#define RF_CORE_CMDSTA_PAR_ERR 0x87
#define RF_CORE_CMDSTA_QUEUE_ERR 0x88
#define RF_CORE_CMDSTA_QUEUE_BUSY 0x89
/* Status values starting with 0x8 correspond to errors */
#define RF_CORE_CMDSTA_ERR_MASK 0x80
/* CMDSTA is 32-bits. Return value in bits 7:0 */
#define RF_CORE_CMDSTA_RESULT_MASK 0xFF
#define RF_CORE_RADIO_OP_STATUS_IDLE 0x0000
/*---------------------------------------------------------------------------*/
#define RF_CORE_NOT_ACCESSIBLE 0x00
#define RF_CORE_ACCESSIBLE 0x01
/*---------------------------------------------------------------------------*/
/* RF Radio Op status constants. Field 'status' in Radio Op command struct */
#define RF_CORE_RADIO_OP_STATUS_IDLE 0x0000
#define RF_CORE_RADIO_OP_STATUS_PENDING 0x0001
#define RF_CORE_RADIO_OP_STATUS_ACTIVE 0x0002
#define RF_CORE_RADIO_OP_STATUS_SKIPPED 0x0003
#define RF_CORE_RADIO_OP_STATUS_DONE_OK 0x0400
#define RF_CORE_RADIO_OP_STATUS_DONE_COUNTDOWN 0x0401
#define RF_CORE_RADIO_OP_STATUS_DONE_RXERR 0x0402
#define RF_CORE_RADIO_OP_STATUS_DONE_TIMEOUT 0x0403
#define RF_CORE_RADIO_OP_STATUS_DONE_STOPPED 0x0404
#define RF_CORE_RADIO_OP_STATUS_DONE_ABORT 0x0405
#define RF_CORE_RADIO_OP_STATUS_ERROR_PAST_START 0x0800
#define RF_CORE_RADIO_OP_STATUS_ERROR_START_TRIG 0x0801
#define RF_CORE_RADIO_OP_STATUS_ERROR_CONDITION 0x0802
#define RF_CORE_RADIO_OP_STATUS_ERROR_PAR 0x0803
#define RF_CORE_RADIO_OP_STATUS_ERROR_POINTER 0x0804
#define RF_CORE_RADIO_OP_STATUS_ERROR_CMDID 0x0805
#define RF_CORE_RADIO_OP_STATUS_ERROR_NO_SETUP 0x0807
#define RF_CORE_RADIO_OP_STATUS_ERROR_NO_FS 0x0808
#define RF_CORE_RADIO_OP_STATUS_ERROR_SYNTH_PROG 0x0809
/* Additional Op status values for IEEE mode */
#define RF_CORE_RADIO_OP_STATUS_IEEE_SUSPENDED 0x2001
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_OK 0x2400
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_BUSY 0x2401
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_STOPPED 0x2402
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_ACK 0x2403
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_ACKPEND 0x2404
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_TIMEOUT 0x2405
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_BGEND 0x2406
#define RF_CORE_RADIO_OP_STATUS_IEEE_DONE_ABORT 0x2407
#define RF_CORE_RADIO_OP_STATUS_ERROR_WRONG_BG 0x0806
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_PAR 0x2800
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_NO_SETUP 0x2801
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_NO_FS 0x2802
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_SYNTH_PROG 0x2803
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_RXOVF 0x2804
#define RF_CORE_RADIO_OP_STATUS_IEEE_ERROR_TXUNF 0x2805
/* Op status values for BLE mode */
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_OK 0x1400
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_RXTIMEOUT 0x1401
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_NOSYNC 0x1402
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_RXERR 0x1403
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_CONNECT 0x1404
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_MAXNACK 0x1405
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_ENDED 0x1406
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_ABORT 0x1407
#define RF_CORE_RADIO_OP_STATUS_BLE_DONE_STOPPED 0x1408
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_PAR 0x1800
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_RXBUF 0x1801
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_NO_SETUP 0x1802
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_NO_FS 0x1803
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_SYNTH_PROG 0x1804
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_RXOVF 0x1805
#define RF_CORE_RADIO_OP_STATUS_BLE_ERROR_TXUNF 0x1806
/* Op status values for proprietary mode */
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_OK 0x3400
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_RXTIMEOUT 0x3401
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_BREAK 0x3402
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_ENDED 0x3403
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_STOPPED 0x3404
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_ABORT 0x3405
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_RXERR 0x3406
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_IDLE 0x3407
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_BUSY 0x3408
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_IDLETIMEOUT 0x3409
#define RF_CORE_RADIO_OP_STATUS_PROP_DONE_BUSYTIMEOUT 0x340A
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_PAR 0x3800
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_RXBUF 0x3801
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_RXFULL 0x3802
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_NO_SETUP 0x3803
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_NO_FS 0x3804
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_RXOVF 0x3805
#define RF_CORE_RADIO_OP_STATUS_PROP_ERROR_TXUNF 0x3806
/* Bits 15:12 signify the protocol */
#define RF_CORE_RADIO_OP_STATUS_PROTO_MASK 0xF000
#define RF_CORE_RADIO_OP_STATUS_PROTO_GENERIC 0x0000
#define RF_CORE_RADIO_OP_STATUS_PROTO_BLE 0x1000
#define RF_CORE_RADIO_OP_STATUS_PROTO_IEEE 0x2000
#define RF_CORE_RADIO_OP_STATUS_PROTO_PROP 0x3000
/* Bits 11:10 signify Running / Done OK / Done with error */
#define RF_CORE_RADIO_OP_MASKED_STATUS 0x0C00
#define RF_CORE_RADIO_OP_MASKED_STATUS_RUNNING 0x0000
#define RF_CORE_RADIO_OP_MASKED_STATUS_DONE 0x0400
#define RF_CORE_RADIO_OP_MASKED_STATUS_ERROR 0x0800
/*---------------------------------------------------------------------------*/
/* Command Types */
#define RF_CORE_COMMAND_TYPE_MASK 0x0C00
#define RF_CORE_COMMAND_TYPE_RADIO_OP 0x0800
#define RF_CORE_COMMAND_TYPE_IEEE_BG_RADIO_OP 0x0800
#define RF_CORE_COMMAND_TYPE_IEEE_FG_RADIO_OP 0x0C00
#define RF_CORE_COMMAND_PROTOCOL_MASK 0x3000
#define RF_CORE_COMMAND_PROTOCOL_COMMON 0x0000
#define RF_CORE_COMMAND_PROTOCOL_BLE 0x1000
#define RF_CORE_COMMAND_PROTOCOL_IEEE 0x2000
#define RF_CORE_COMMAND_PROTOCOL_PROP 0x3000
/*---------------------------------------------------------------------------*/
/* Radio timer register */
#define RATCNT 0x00000004
/*---------------------------------------------------------------------------*/
/* Make the main driver process visible to mode drivers */
PROCESS_NAME(rf_core_process);
/*---------------------------------------------------------------------------*/
/**
* \brief Check whether the RF core is accessible
* \retval RF_CORE_ACCESSIBLE The core is powered and ready for access
* \retval RF_CORE_NOT_ACCESSIBLE The core is not ready
*
* If this function returns RF_CORE_NOT_ACCESSIBLE, rf_core_power_up() must be
* called before any attempt to access the core.
*/
uint8_t rf_core_is_accessible(void);
/**
* \brief Sends a command to the RF core.
*
* \param cmd The command value or a pointer to a command buffer
* \param status A pointer to a variable which will hold the status
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* This function supports all three types of command (Radio OP, immediate and
* direct)
*
* For immediate and Radio OPs, cmd is a pointer to the data structure
* containing the command and its parameters. This data structure must be
* 4-byte aligned.
*
* For direct commands, cmd contains the value of the command alongside its
* parameters. This value will be written to CMDSTA verbatim, so the command
* ID must be in the 16 high bits, and the 2 LS bits must be set to 01 by the
* caller.
*
* The caller is responsible of allocating and populating cmd for Radio OP and
* immediate commands
*
* The caller is responsible for allocating status
*
* For immediate commands and radio Ops, this function will set the command's
* status field to RF_CORE_RADIO_OP_STATUS_IDLE before sending it to the RF
*/
uint_fast8_t rf_core_send_cmd(uint32_t cmd, uint32_t *status);
/**
* \brief Block and wait for a Radio op to complete
* \param cmd A pointer to any command's structure
* \retval RF_CORE_CMD_OK the command completed with status _DONE_OK
* \retval RF_CORE_CMD_ERROR Timeout exceeded or the command completed with
* status _DONE_xxx (e.g. RF_CORE_RADIO_OP_STATUS_DONE_TIMEOUT)
*/
uint_fast8_t rf_core_wait_cmd_done(void *cmd);
/**
* \brief Turn on power to the RFC and boot it.
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*/
int rf_core_power_up(void);
/**
* \brief Disable RFCORE clock domain in the MCU VD and turn off the RFCORE PD
*/
void rf_core_power_down(void);
/**
* \brief Initialise RF APIs in the RF core
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* Depending on chip family and capability, this function will set the correct
* value to PRCM.RFCMODESEL
*/
uint8_t rf_core_set_modesel(void);
/**
* \brief Start the CM0 RAT
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* This function must be called each time the CM0 boots. The boot sequence
* can be performed automatically by calling rf_core_boot() if patches are not
* required. If patches are required then the patches must be applied after
* power up and before calling this function.
*/
uint8_t rf_core_start_rat(void);
/**
* \brief Stop the CM0 RAT synchronously
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* This function is not strictly necessary, but through calling it it's possibly
* to learn the RAT / RTC offset, which useful to get accurate radio timestamps.
*/
uint8_t rf_core_stop_rat(void);
/**
* \brief Restart the CM0 RAT
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* This function restarts the CM0 RAT and therefore resynchornizes it with RTC.
* To achieve good timing accuracy, it should be called periodically.
*/
uint8_t rf_core_restart_rat(void);
/**
* \brief Boot the RF Core
* \return RF_CORE_CMD_OK or RF_CORE_CMD_ERROR
*
* This function will perform the CM0 boot sequence. It will first power it up
* and then start the RAT. If a patch is required, then the mode driver must
* not call this function and perform the sequence manually, applying patches
* after boot and before calling rf_core_start_rat().
*
* The function will return RF_CORE_CMD_ERROR if any of those steps fails. If
* the boot sequence fails to complete, the RF Core will be powered down.
*/
uint8_t rf_core_boot(void);
/**
* \brief Setup RF core interrupts
*/
void rf_core_setup_interrupts(bool poll_mode);
/**
* \brief Enable interrupt on command done.
* \param fg set true to enable irq on foreground command done and false for
* background commands or if not in ieee mode.
* \param poll_mode true if the driver is in poll mode
*
* This is used within TX routines in order to be able to sleep the CM3 and
* wake up after TX has finished
*
* \sa rf_core_cmd_done_dis()
*/
void rf_core_cmd_done_en(bool fg, bool poll_mode);
/**
* \brief Disable the LAST_CMD_DONE and LAST_FG_CMD_DONE interrupts.
*
* This is used within TX routines after TX has completed
*
* \sa rf_core_cmd_done_en()
*/
void rf_core_cmd_done_dis(bool poll_mode);
/**
* \brief Returns a pointer to the most recent proto-dependent Radio Op
* \return The pointer
*
* The RF Core driver will remember the most recent proto-dependent Radio OP
* issued, so that other modules can inspect its type and state at a subsequent
* stage. The assumption is that those commands will be issued by a function
* that will then return. The following commands will be "remembered"
*
* - All BLE Radio Ops (0x18nn)
* - All Prop Radio Ops (0x38nn)
* - IEEE BG Radio Ops (0x28nn)
*
* The following commands are assumed to be executed synchronously and will
* thus not be remembered by the core and not returned by this function:
*
* - Direct commands
* - Proto-independent commands (including Radio Ops and Immediate ones)
* - IEEE FG Radio Ops (0x2Cxx)
*
* This assumes that all commands will be sent to the radio using
* rf_core_send_cmd()
*/
rfc_radioOp_t *rf_core_get_last_radio_op(void);
/**
* \brief Prepare a buffer to host a Radio Op
* \param buf A pointer to the buffer that will host the Radio Op
* \param len The buffer's length
* \param command The command ID
*
* The caller is responsible to allocate the buffer
*
* This function will not check whether the buffer is large enough to hold the
* command. This is the caller's responsibility
*
* This function will wipe out the buffer's contents.
*/
void rf_core_init_radio_op(rfc_radioOp_t *buf, uint16_t len, uint16_t command);
/**
* \brief Register a primary mode for radio operation
* \param mode A pointer to the struct representing the mode
*
* A normal NESTACK_RADIO driver will normally register itself by calling
* this function during its own init().
*
* \sa rf_core_primary_mode_t
*/
void rf_core_primary_mode_register(const rf_core_primary_mode_t *mode);
/**
* \brief Abort the currently running primary radio op
*/
void rf_core_primary_mode_abort(void);
/**
* \brief Abort the currently running primary radio op
*/
uint8_t rf_core_primary_mode_restore(void);
/*---------------------------------------------------------------------------*/
#endif /* RF_CORE_H_ */
/*---------------------------------------------------------------------------*/
/**
* @}
* @}
*/