nes-proj/cpu/stm32w108/hal/micro/generic/compiler/platform-common.h

357 lines
10 KiB
C

/**
* \brief Compiler and Platform specific definitions and typedefs common to
* all platforms.
*
* platform-common.h provides PLATFORM_HEADER defaults and common definitions.
* This head should never be included directly, it should only be included
* by the specific PLATFORM_HEADER used by your platform.
*
* See platform-common.h for source code.
*@{
*/
/**
* @addtogroup stm32w-cpu
* @{ */
/** \file hal/micro/generic/compiler/platform-common.h
* See platform_common.h for detailed documentation.
*
* <!--(C) COPYRIGHT 2010 STMicroelectronics. All rights reserved. -->
*/
#ifndef PLATCOMMONOKTOINCLUDE
// This header should only be included by a PLATFORM_HEADER
#error platform-common.h should not be included directly
#endif
#ifndef PLATFORMCOMMON_H_
#define PLATFORMCOMMON_H_
////////////////////////////////////////////////////////////////////////////////
// Many of the common definitions must be explicitly enabled by the
// particular PLATFORM_HEADER being used
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
#ifdef _HAL_USE_COMMON_PGM_
/** \name Master Program Memory Declarations
* These are a set of defines for simple declarations of program memory.
*/
//@{
/**
* \brief Standard program memory delcaration.
*/
#define PGM const
/**
* \brief Char pointer to program memory declaration.
*/
#define PGM_P const char *
/**
* \brief Unsigned char pointer to program memory declaration.
*/
#define PGM_PU const unsigned char *
/**
* \brief Sometimes a second PGM is needed in a declaration. Having two
* 'const' declarations generates a warning so we have a second PGM that turns
* into nothing under gcc.
*/
#define PGM_NO_CONST
//@} \\END MASTER PROGRAM MEMORY DECLARATIONS
#endif //_HAL_USE_COMMON_PGM_
////////////////////////////////////////////////////////////////////////////////
#ifdef _HAL_USE_COMMON_DIVMOD_
/** \name Divide and Modulus Operations
* Some platforms can perform divide and modulus operations on 32 bit
* quantities more efficiently when the divisor is only a 16 bit quantity.
* C compilers will always promote the divisor to 32 bits before performing the
* operation, so the following utility functions are instead required to take
* advantage of this optimisation.
*/
//@{
/**
* \brief Provide a portable name for the uint32_t by uint16_t division
* library function (which can perform the division with only a single
* assembly instruction on some platforms)
*/
#define halCommonUDiv32By16(x, y) ((uint16_t) (((uint32_t) (x)) / ((uint16_t) (y))))
/**
* \brief Provide a portable name for the int32_t by int16_t division
* library function (which can perform the division with only a single
* assembly instruction on some platforms)
*/
#define halCommonSDiv32By16(x, y) ((int16_t) (((int32_t) (x)) / ((int16_t) (y))))
/**
* \brief Provide a portable name for the uint32_t by uint16_t modulo
* library function (which can perform the division with only a single
* assembly instruction on some platforms)
*/
#define halCommonUMod32By16(x, y) ((uint16_t) (((uint32_t) (x)) % ((uint16_t) (y))))
/**
* \brief Provide a portable name for the int32_t by int16_t modulo
* library function (which can perform the division with only a single
* assembly instruction on some platforms)
*/
#define halCommonSMod32By16(x, y) ((int16_t) (((int32_t) (x)) % ((int16_t) (y))))
//@} \\END DIVIDE and MODULUS OPERATIONS
#endif //_HAL_USE_COMMON_DIVMOD_
////////////////////////////////////////////////////////////////////////////////
#ifdef _HAL_USE_COMMON_MEMUTILS_
/** \name C Standard Library Memory Utilities
* These should be used in place of the standard library functions.
*
* These functions have the same parameters and expected results as their C
* Standard Library equivalents but may take advantage of certain implementation
* optimizations.
*
* Unless otherwise noted, these functions are utilized by the StStack and are
* therefore required to be implemented in the HAL. Additionally, unless otherwise
* noted, applications that find these functions useful may utilze them.
*/
//@{
/**
* \brief Refer to the C stdlib memcpy().
*/
void halCommonMemCopy(void *dest, const void *src, uint8_t bytes);
/**
* \brief Refer to the C stdlib memset().
*/
void halCommonMemSet(void *dest, uint8_t val, uint16_t bytes);
/**
* \brief Refer to the C stdlib memcmp().
*/
int8_t halCommonMemCompare(const void *source0, const void *source1, uint8_t bytes);
/**
* \brief Friendly convenience macro pointing to the full HAL function.
*/
#define MEMSET(d,v,l) halCommonMemSet(d,v,l)
#define MEMCOPY(d,s,l) halCommonMemCopy(d,s,l)
#define MEMCOMPARE(s0,s1,l) halCommonMemCompare(s0, s1, l)
#define MEMPGMCOMPARE(s0,s1,l) halCommonMemPGMCompare(s0, s1, l)
//@} // end of C Standard Library Memory Utilities
#endif //_HAL_USE_COMMON_MEMUTILS_
////////////////////////////////////////////////////////////////////////////////
// The following sections are common on all platforms
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/**
* @name Generic Types
*@{
*/
/**
* \brief An alias for one, used for clarity.
*/
#define TRUE 1
/**
* \brief An alias for zero, used for clarity.
*/
#define FALSE 0
#ifndef NULL
/**
* \brief The null pointer.
*/
#define NULL ((void *)0)
#endif
//@} \\END Generic Types
/**
* @name Bit Manipulation Macros
*/
//@{
/**
* \brief Useful to reference a single bit of a byte.
*/
#define BIT(x) (1U << (x)) // Unsigned avoids compiler warnings re BIT(15)
/**
* \brief Useful to reference a single bit of an uint32_t type.
*/
#define BIT32(x) (((uint32_t) 1) << (x))
/**
* \brief Sets \c bit in the \c reg register or byte.
* @note Assuming \c reg is an IO register, some platforms
* can implement this in a single atomic operation.
*/
#define SETBIT(reg, bit) reg |= BIT(bit)
/**
* \brief Sets the bits in the \c reg register or the byte
* as specified in the bitmask \c bits.
* @note This is never a single atomic operation.
*/
#define SETBITS(reg, bits) reg |= (bits)
/**
* \brief Clears a bit in the \c reg register or byte.
* @note Assuming \c reg is an IO register, some platforms (such as the AVR)
* can implement this in a single atomic operation.
*/
#define CLEARBIT(reg, bit) reg &= ~(BIT(bit))
/**
* \brief Clears the bits in the \c reg register or byte
* as specified in the bitmask \c bits.
* @note This is never a single atomic operation.
*/
#define CLEARBITS(reg, bits) reg &= ~(bits)
/**
* \brief Returns the value of \c bit within the register or byte \c reg.
*/
#define READBIT(reg, bit) (reg & (BIT(bit)))
/**
* \brief Returns the value of the bitmask \c bits within
* the register or byte \c reg.
*/
#define READBITS(reg, bits) (reg & (bits))
//@} \\END Bit Manipulation Macros
////////////////////////////////////////////////////////////////////////////////
/**
* @name Byte Manipulation Macros
*/
//@{
/**
* \brief Returns the low byte of the 16-bit value \c n as an \c uint8_t.
*/
#define LOW_BYTE(n) ((uint8_t)((n) & 0xFF))
/**
* \brief Returns the high byte of the 16-bit value \c n as an \c uint8_t.
*/
#define HIGH_BYTE(n) ((uint8_t)(LOW_BYTE((n) >> 8)))
/**
* \brief Returns the value built from the two \c uint8_t
* values \c high and \c low.
*/
#define HIGH_LOW_TO_INT(high, low) ( \
(( (uint16_t) (high) ) << 8) + \
( (uint16_t) ( (low) & 0xFF)) \
)
/**
* \brief Returns the low byte of the 32-bit value \c n as an \c uint8_t.
*/
#define BYTE_0(n) ((uint8_t)((n) & 0xFF))
/**
* \brief Returns the second byte of the 32-bit value \c n as an \c uint8_t.
*/
#define BYTE_1(n) ((uint8_t)(BYTE_0((n) >> 8)))
/**
* \brief Returns the third byte of the 32-bit value \c n as an \c uint8_t.
*/
#define BYTE_2(n) ((uint8_t)(BYTE_0((n) >> 16)))
/**
* \brief Returns the high byte of the 32-bit value \c n as an \c uint8_t.
*/
#define BYTE_3(n) ((uint8_t)(BYTE_0((n) >> 24)))
//@} \\END Byte manipulation macros
////////////////////////////////////////////////////////////////////////////////
/**
* @name Time Manipulation Macros
*/
//@{
/**
* \brief Returns the elapsed time between two 8 bit values.
* Result may not be valid if the time samples differ by more than 127
*/
#define elapsedTimeInt8u(oldTime, newTime) \
((uint8_t) ((uint8_t)(newTime) - (uint8_t)(oldTime)))
/**
* \brief Returns the elapsed time between two 16 bit values.
* Result may not be valid if the time samples differ by more than 32767
*/
#define elapsedTimeInt16u(oldTime, newTime) \
((uint16_t) ((uint16_t)(newTime) - (uint16_t)(oldTime)))
/**
* \brief Returns the elapsed time between two 32 bit values.
* Result may not be valid if the time samples differ by more than 2147483647
*/
#define elapsedTimeInt32u(oldTime, newTime) \
((uint32_t) ((uint32_t)(newTime) - (uint32_t)(oldTime)))
/**
* \brief Returns TRUE if t1 is greater than t2. Can only account for 1 wrap
* around of the variable before it is wrong.
*/
#define MAX_INT8U_VALUE 0xFF
#define timeGTorEqualInt8u(t1, t2) \
(elapsedTimeInt8u(t2, t1) <= ((MAX_INT8U_VALUE + 1) / 2))
/**
* \brief Returns TRUE if t1 is greater than t2. Can only account for 1 wrap
* around of the variable before it is wrong.
*/
#define MAX_INT16U_VALUE 0xFFFF
#define timeGTorEqualInt16u(t1, t2) \
(elapsedTimeInt16u(t2, t1) <= ((MAX_INT16U_VALUE + 1) / 2))
/**
* \brief Returns TRUE if t1 is greater than t2. Can only account for 1 wrap
* around of the variable before it is wrong.
*/
#define MAX_INT32U_VALUE 0xFFFFFFFF
#define timeGTorEqualInt32u(t1, t2) \
(elapsedTimeInt32u(t2, t1) <= ((MAX_INT32U_VALUE + 1) / 2))
//@} \\END Time manipulation macros
#endif //PLATFORMCOMMON_H_
/** @} END addtogroup */
/** @} */