nes-proj/cpu/stm32w108/dev/stm32w-radio.c
Niclas Finne f0c48c55ca Fixed STM32W radio to return RADIO_RESULT_INVALID_VALUE if trying to
set a transmission power outside the valid range instead of using
closest valid value.
2014-04-13 21:36:45 +02:00

868 lines
24 KiB
C

/**
* \addtogroup stm32w-cpu
*
* @{
*/
/*
* Copyright (c) 2010, STMicroelectronics.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* \file
* Machine dependent STM32W radio code.
* \author
* Salvatore Pitrulli
* Chi-Anh La la@imag.fr
* Simon Duquennoy <simonduq@sics.se>
*/
#include PLATFORM_HEADER
#include "hal/error.h"
#include "hal/hal.h"
#include "contiki.h"
#include "net/mac/frame802154.h"
#include "dev/stm32w-radio.h"
#include "net/netstack.h"
#include "net/packetbuf.h"
#include "net/rime/rimestats.h"
#include "sys/rtimer.h"
#define DEBUG 0
#include "dev/leds.h"
#define LED_ACTIVITY 0
#ifdef ST_CONF_RADIO_AUTOACK
#define ST_RADIO_AUTOACK ST_CONF_RADIO_AUTOACK
#else
#define ST_RADIO_AUTOACK 0
#endif /* ST_CONF_RADIO_AUTOACK */
#if RDC_CONF_DEBUG_LED
#define LED_RDC RDC_CONF_DEBUG_LED
#define LED_ACTIVITY 1
#else
#define LED_RDC 0
#endif /* RDC_CONF_DEBUG_LED */
#if DEBUG > 0
#include <stdio.h>
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...) do {} while (0)
#endif /* DEBUG > 0 */
#if LED_ACTIVITY
#define LED_TX_ON() leds_on(LEDS_GREEN)
#define LED_TX_OFF() leds_off(LEDS_GREEN)
#define LED_RX_ON() do { \
if(LED_RDC == 0){ \
leds_on(LEDS_RED); \
} \
} while (0)
#define LED_RX_OFF() do { \
if(LED_RDC == 0){ \
leds_off(LEDS_RED); \
} \
} while (0)
#define LED_RDC_ON() do { \
if(LED_RDC == 1){ \
leds_on(LEDS_RED); \
} \
} while (0)
#define LED_RDC_OFF() do { \
if(LED_RDC == 1){ \
leds_off(LEDS_RED); \
} \
} while (0)
#else
#define LED_TX_ON()
#define LED_TX_OFF()
#define LED_RX_ON()
#define LED_RX_OFF()
#define LED_RDC_ON()
#define LED_RDC_OFF()
#endif /* LED_ACTIVITY */
#if RDC_CONF_HARDWARE_CSMA
#define MAC_RETRIES 0
#endif /* RDC_CONF_HARDWARE_CSMA */
#ifndef MAC_RETRIES
#define MAC_RETRIES 1
#endif /* MAC_RETRIES */
#if MAC_RETRIES
int8_t mac_retries_left;
#define INIT_RETRY_CNT() (mac_retries_left = packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS))
#define DEC_RETRY_CNT() (mac_retries_left--)
#define RETRY_CNT_GTZ() (mac_retries_left > 0)
#else
#define INIT_RETRY_CNT()
#define DEC_RETRY_CNT()
#define RETRY_CNT_GTZ() 0
#endif /* MAC_RETRIES */
/* If set to 1, a send() returns only after the packet has been transmitted.
This is necessary if you use the x-mac module, for example. */
#ifndef RADIO_WAIT_FOR_PACKET_SENT
#define RADIO_WAIT_FOR_PACKET_SENT 1
#endif /* RADIO_WAIT_FOR_PACKET_SENT */
#define TO_PREV_STATE() do { \
if(onoroff == OFF){ \
ST_RadioSleep(); \
ENERGEST_OFF(ENERGEST_TYPE_LISTEN); \
} \
} while(0)
#if RDC_CONF_HARDWARE_CSMA
#define ST_RADIO_CHECK_CCA FALSE
#define ST_RADIO_CCA_ATTEMPT_MAX 0
#define ST_BACKOFF_EXP_MIN 0
#define ST_BACKOFF_EXP_MAX 0
#else /* RDC_CONF_HARDWARE_CSMA */
#define ST_RADIO_CHECK_CCA TRUE
#define ST_RADIO_CCA_ATTEMPT_MAX 4
#define ST_BACKOFF_EXP_MIN 2
#define ST_BACKOFF_EXP_MAX 6
#endif /* RDC_CONF_HARDWARE_CSMA */
const RadioTransmitConfig radioTransmitConfig = {
TRUE, /* waitForAck; */
ST_RADIO_CHECK_CCA, /* checkCca;Set to FALSE with low-power MACs. */
ST_RADIO_CCA_ATTEMPT_MAX, /* ccaAttemptMax; */
ST_BACKOFF_EXP_MIN, /* backoffExponentMin; */
ST_BACKOFF_EXP_MAX, /* backoffExponentMax; */
TRUE /* appendCrc; */
};
#define MAC_RETRIES 0
/*
* The buffers which hold incoming data.
*/
#ifndef RADIO_RXBUFS
#define RADIO_RXBUFS 1
#endif /* RADIO_RXBUFS */
/* +1 because of the first byte, which will contain the length of the packet. */
static uint8_t stm32w_rxbufs[RADIO_RXBUFS][STM32W_MAX_PACKET_LEN + 1];
#if RADIO_RXBUFS > 1
static volatile int8_t first = -1, last = 0;
#else /* RADIO_RXBUFS > 1 */
static const int8_t first = 0, last = 0;
#endif /* RADIO_RXBUFS > 1 */
#if RADIO_RXBUFS > 1
#define CLEAN_RXBUFS() do{first = -1; last = 0;}while(0)
#define RXBUFS_EMPTY() (first == -1)
int
RXBUFS_FULL()
{
int8_t first_tmp = first;
return first_tmp == last;
}
#else /* RADIO_RXBUFS > 1 */
#define CLEAN_RXBUFS() (stm32w_rxbufs[0][0] = 0)
#define RXBUFS_EMPTY() (stm32w_rxbufs[0][0] == 0)
#define RXBUFS_FULL() (stm32w_rxbufs[0][0] != 0)
#endif /* RADIO_RXBUFS > 1 */
static uint8_t
__attribute__ ((aligned(2))) stm32w_txbuf[STM32W_MAX_PACKET_LEN + 1];
#define CLEAN_TXBUF() (stm32w_txbuf[0] = 0)
#define TXBUF_EMPTY() (stm32w_txbuf[0] == 0)
#define CHECKSUM_LEN 2
/*
* The transceiver state.
*/
#define ON 0
#define OFF 1
#define BUSYWAIT_UNTIL(cond, max_time) \
do { \
rtimer_clock_t t0; \
t0 = RTIMER_NOW(); \
while(!(cond) && RTIMER_CLOCK_LT(RTIMER_NOW(), t0 + (max_time))); \
} while(0)
#define GET_LOCK() locked++
static volatile uint8_t onoroff = OFF;
static uint8_t receiving_packet = 0;
static int8_t last_rssi;
static volatile StStatus last_tx_status;
static uint8_t locked;
static volatile uint8_t is_transmit_ack;
/*--------------------------------------------------------------------------*/
static void
RELEASE_LOCK(void)
{
if(locked > 0)
locked--;
}
/*---------------------------------------------------------------------------*/
PROCESS(stm32w_radio_process, "STM32W radio driver");
/*---------------------------------------------------------------------------*/
static int stm32w_radio_init(void);
static int stm32w_radio_prepare(const void *payload,
unsigned short payload_len);
static int stm32w_radio_transmit(unsigned short payload_len);
static int stm32w_radio_send(const void *data, unsigned short len);
static int stm32w_radio_read(void *buf, unsigned short bufsize);
static int stm32w_radio_channel_clear(void);
static int stm32w_radio_receiving_packet(void);
static int stm32w_radio_pending_packet(void);
static int stm32w_radio_on(void);
static int stm32w_radio_off(void);
static int add_to_rxbuf(uint8_t * src);
static int read_from_rxbuf(void *dest, unsigned short len);
/*--------------------------------------------------------------------------*/
static radio_result_t
get_value(radio_param_t param, radio_value_t *value)
{
if(!value) {
return RADIO_RESULT_INVALID_VALUE;
}
switch(param) {
case RADIO_PARAM_POWER_MODE:
*value = onoroff == ON ? RADIO_POWER_MODE_ON : RADIO_POWER_MODE_OFF;
return RADIO_RESULT_OK;
case RADIO_PARAM_CHANNEL:
*value = ST_RadioGetChannel();
return RADIO_RESULT_OK;
case RADIO_PARAM_PAN_ID:
*value = ST_RadioGetPanId();
return RADIO_RESULT_OK;
case RADIO_PARAM_16BIT_ADDR:
*value = ST_RadioGetNodeId();
return RADIO_RESULT_OK;
case RADIO_PARAM_RX_MODE:
*value = 0;
if(ST_RadioAddressFilteringEnabled()) {
*value |= RADIO_RX_MODE_ADDRESS_FILTER;
}
if(ST_RadioAutoAckEnabled()) {
*value |= RADIO_RX_MODE_AUTOACK;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_TXPOWER:
*value = ST_RadioGetPower();
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
*value = ST_RadioGetEdCcaThreshold();
return RADIO_RESULT_OK;
case RADIO_PARAM_RSSI:
*value = ST_RadioEnergyDetection();
return RADIO_RESULT_OK;
case RADIO_CONST_CHANNEL_MIN:
*value = ST_MIN_802_15_4_CHANNEL_NUMBER;
return RADIO_RESULT_OK;
case RADIO_CONST_CHANNEL_MAX:
*value = ST_MAX_802_15_4_CHANNEL_NUMBER;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MIN:
*value = MIN_RADIO_POWER;
return RADIO_RESULT_OK;
case RADIO_CONST_TXPOWER_MAX:
*value = MAX_RADIO_POWER;
return RADIO_RESULT_OK;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
}
/*--------------------------------------------------------------------------*/
static radio_result_t
set_value(radio_param_t param, radio_value_t value)
{
switch(param) {
case RADIO_PARAM_POWER_MODE:
if(value == RADIO_POWER_MODE_ON) {
stm32w_radio_on();
return RADIO_RESULT_OK;
}
if(value == RADIO_POWER_MODE_OFF) {
stm32w_radio_off();
return RADIO_RESULT_OK;
}
return RADIO_RESULT_INVALID_VALUE;
case RADIO_PARAM_CHANNEL:
if(value < ST_MIN_802_15_4_CHANNEL_NUMBER ||
value > ST_MAX_802_15_4_CHANNEL_NUMBER) {
return RADIO_RESULT_INVALID_VALUE;
}
if(ST_RadioSetChannel(value) != ST_SUCCESS) {
return RADIO_RESULT_ERROR;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_PAN_ID:
ST_RadioSetPanId(value & 0xffff);
return RADIO_RESULT_OK;
case RADIO_PARAM_16BIT_ADDR:
ST_RadioSetNodeId(value & 0xffff);
return RADIO_RESULT_OK;
case RADIO_PARAM_RX_MODE:
if(value & ~(RADIO_RX_MODE_ADDRESS_FILTER |
RADIO_RX_MODE_AUTOACK)) {
return RADIO_RESULT_INVALID_VALUE;
}
ST_RadioEnableAddressFiltering((value & RADIO_RX_MODE_ADDRESS_FILTER) != 0);
ST_RadioEnableAutoAck((value & RADIO_RX_MODE_AUTOACK) != 0);
return RADIO_RESULT_OK;
case RADIO_PARAM_TXPOWER:
if(value < MIN_RADIO_POWER || value > MAX_RADIO_POWER) {
return RADIO_RESULT_INVALID_VALUE;
}
if(ST_RadioSetPower((int8_t)value) != ST_SUCCESS) {
return RADIO_RESULT_INVALID_VALUE;
}
return RADIO_RESULT_OK;
case RADIO_PARAM_CCA_THRESHOLD:
ST_RadioSetEdCcaThreshold((int8_t)value);
return RADIO_RESULT_OK;
default:
return RADIO_RESULT_NOT_SUPPORTED;
}
}
/*--------------------------------------------------------------------------*/
static radio_result_t
get_object(radio_param_t param, void *dest, size_t size)
{
const uint8_t *eui64;
uint8_t *target;
int i;
if(param == RADIO_PARAM_64BIT_ADDR) {
if(size < 8 || !dest) {
return RADIO_RESULT_INVALID_VALUE;
}
eui64 = ST_RadioGetEui64();
if(!eui64) {
return RADIO_RESULT_ERROR;
}
target = dest;
for(i = 0; i < 8; i++) {
target[i] = eui64[7 - i];
}
return RADIO_RESULT_OK;
}
return RADIO_RESULT_NOT_SUPPORTED;
}
/*--------------------------------------------------------------------------*/
static radio_result_t
set_object(radio_param_t param, const void *src, size_t size)
{
return RADIO_RESULT_NOT_SUPPORTED;
}
/*--------------------------------------------------------------------------*/
const struct radio_driver stm32w_radio_driver = {
stm32w_radio_init,
stm32w_radio_prepare,
stm32w_radio_transmit,
stm32w_radio_send,
stm32w_radio_read,
stm32w_radio_channel_clear,
stm32w_radio_receiving_packet,
stm32w_radio_pending_packet,
stm32w_radio_on,
stm32w_radio_off,
get_value,
set_value,
get_object,
set_object
};
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_init(void)
{
/* A channel also needs to be set. */
ST_RadioSetChannel(RF_CHANNEL);
/* Initialize radio (analog section, digital baseband and MAC). */
/* Leave radio powered up in non-promiscuous rx mode. */
ST_RadioInit(ST_RADIO_POWER_MODE_OFF);
onoroff = OFF;
ST_RadioSetPanId(IEEE802154_PANID);
CLEAN_RXBUFS();
CLEAN_TXBUF();
#if ST_RADIO_AUTOACK && !(UIP_CONF_LL_802154 && LINKADDR_CONF_SIZE==8)
#error "Autoack and address filtering can only be used with EUI 64"
#endif
ST_RadioEnableAutoAck(ST_RADIO_AUTOACK);
ST_RadioEnableAddressFiltering(ST_RADIO_AUTOACK);
locked = 0;
process_start(&stm32w_radio_process, NULL);
return 0;
}
/*---------------------------------------------------------------------------*/
void
stm32w_radio_set_promiscous(uint8_t on)
{
if(on) {
ST_RadioEnableAddressFiltering(0);
} else {
ST_RadioEnableAddressFiltering(ST_RADIO_AUTOACK);
}
}
/*---------------------------------------------------------------------------*/
int
stm32w_radio_set_channel(uint8_t channel)
{
if (ST_RadioSetChannel(channel) == ST_SUCCESS) {
return 0;
} else {
return 1;
}
}
/*---------------------------------------------------------------------------*/
static int
wait_for_tx(void)
{
struct timer t;
timer_set(&t, CLOCK_SECOND / 10);
while(!TXBUF_EMPTY()) {
if(timer_expired(&t)) {
PRINTF("stm32w: tx buffer full.\r\n");
return 1;
}
/* Put CPU in sleep mode. */
halSleepWithOptions(SLEEPMODE_IDLE, 0);
}
return 0;
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_prepare(const void *payload, unsigned short payload_len)
{
if(payload_len > STM32W_MAX_PACKET_LEN) {
PRINTF("stm32w: payload length=%d is too long.\r\n", payload_len);
return RADIO_TX_ERR;
}
#if !RADIO_WAIT_FOR_PACKET_SENT
/*
* Check if the txbuf is empty. Wait for a finite time.
* This should not occur if we wait for the end of transmission in
* stm32w_radio_transmit().
*/
if(wait_for_tx()) {
PRINTF("stm32w: tx buffer full.\r\n");
return RADIO_TX_ERR;
}
#endif /* RADIO_WAIT_FOR_PACKET_SENT */
/*
* Copy to the txbuf.
* The first byte must be the packet length.
*/
CLEAN_TXBUF();
memcpy(stm32w_txbuf + 1, payload, payload_len);
return RADIO_TX_OK;
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_transmit(unsigned short payload_len)
{
stm32w_txbuf[0] = payload_len + CHECKSUM_LEN;
INIT_RETRY_CNT();
if(onoroff == OFF) {
PRINTF("stm32w: Radio is off, turning it on.\r\n");
ST_RadioWake();
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
}
#if RADIO_WAIT_FOR_PACKET_SENT
GET_LOCK();
#endif /* RADIO_WAIT_FOR_PACKET_SENT */
last_tx_status = -1;
LED_TX_ON();
if(ST_RadioTransmit(stm32w_txbuf) == ST_SUCCESS) {
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);
PRINTF("stm32w: sending %d bytes\r\n", payload_len);
#if DEBUG > 1
for(uint8_t c = 1; c <= stm32w_txbuf[0] - 2; c++) {
PRINTF("%x:", stm32w_txbuf[c]);
}
PRINTF("\r\n");
#endif
#if RADIO_WAIT_FOR_PACKET_SENT
if(wait_for_tx()) {
PRINTF("stm32w: unknown tx error.\r\n");
TO_PREV_STATE();
LED_TX_OFF();
RELEASE_LOCK();
return RADIO_TX_ERR;
}
TO_PREV_STATE();
if(last_tx_status == ST_SUCCESS || last_tx_status == ST_PHY_ACK_RECEIVED ||
last_tx_status == ST_MAC_NO_ACK_RECEIVED) {
RELEASE_LOCK();
if(last_tx_status == ST_PHY_ACK_RECEIVED) {
return RADIO_TX_OK; /* ACK status */
} else if(last_tx_status == ST_MAC_NO_ACK_RECEIVED ||
last_tx_status == ST_SUCCESS) {
return RADIO_TX_NOACK;
}
}
LED_TX_OFF();
RELEASE_LOCK();
return RADIO_TX_ERR;
#else /* RADIO_WAIT_FOR_PACKET_SENT */
TO_PREV_STATE();
LED_TX_OFF();
return RADIO_TX_OK;
#endif /* RADIO_WAIT_FOR_PACKET_SENT */
}
#if RADIO_WAIT_FOR_PACKET_SENT
RELEASE_LOCK();
#endif /* RADIO_WAIT_FOR_PACKET_SENT */
TO_PREV_STATE();
PRINTF("stm32w: transmission never started.\r\n");
/* TODO: Do we have to retransmit? */
CLEAN_TXBUF();
LED_TX_OFF();
return RADIO_TX_ERR;
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_send(const void *payload, unsigned short payload_len)
{
if (stm32w_radio_prepare(payload, payload_len) == RADIO_TX_ERR) {
return RADIO_TX_ERR;
}
return stm32w_radio_transmit(payload_len);
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_channel_clear(void)
{
return ST_RadioChannelIsClear();
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_receiving_packet(void)
{
return receiving_packet;
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_pending_packet(void)
{
return !RXBUFS_EMPTY();
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_off(void)
{
/* Any transmit or receive packets in progress are aborted.
* Waiting for end of transmission or reception have to be done.
*/
if(locked) {
PRINTF("stm32w: try to off while sending/receiving (lock=%u).\r\n",
locked);
return 0;
}
/* off only if there is no transmission or reception of packet. */
if(onoroff == ON && TXBUF_EMPTY() && !receiving_packet) {
LED_RDC_OFF();
ST_RadioSleep();
onoroff = OFF;
CLEAN_TXBUF();
CLEAN_RXBUFS();
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
}
return 1;
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_on(void)
{
PRINTF("stm32w: turn radio on\n");
if(onoroff == OFF) {
LED_RDC_ON();
ST_RadioWake();
onoroff = ON;
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
}
return 1;
}
/*---------------------------------------------------------------------------*/
int
stm32w_radio_is_on(void)
{
return onoroff == ON;
}
/*---------------------------------------------------------------------------*/
void
ST_RadioReceiveIsrCallback(uint8_t *packet,
boolean ackFramePendingSet,
uint32_t time, uint16_t errors, int8_t rssi)
{
LED_RX_ON();
PRINTF("stm32w: incomming packet received\n");
receiving_packet = 0;
/* Copy packet into the buffer. It is better to do this here. */
if(add_to_rxbuf(packet)) {
process_poll(&stm32w_radio_process);
last_rssi = rssi;
}
LED_RX_OFF();
GET_LOCK();
is_transmit_ack = 1;
/* Wait for sending ACK */
BUSYWAIT_UNTIL(!is_transmit_ack, RTIMER_SECOND / 1500);
RELEASE_LOCK();
}
/*--------------------------------------------------------------------------*/
void
ST_RadioTxAckIsrCallback(void)
{
/*
* This callback is for simplemac 1.1.0.
* Till now we block (RTIMER_SECOND / 1500)
* to prevent radio off during ACK transmission.
*/
is_transmit_ack = 0;
/* RELEASE_LOCK(); */
}
/*--------------------------------------------------------------------------*/
void
ST_RadioTransmitCompleteIsrCallback(StStatus status,
uint32_t txSyncTime, boolean framePending)
{
ENERGEST_OFF(ENERGEST_TYPE_TRANSMIT);
ENERGEST_ON(ENERGEST_TYPE_LISTEN);
LED_TX_OFF();
last_tx_status = status;
if(status == ST_SUCCESS || status == ST_PHY_ACK_RECEIVED) {
CLEAN_TXBUF();
} else {
if(RETRY_CNT_GTZ()) {
/* Retransmission */
LED_TX_ON();
if(ST_RadioTransmit(stm32w_txbuf) == ST_SUCCESS) {
ENERGEST_OFF(ENERGEST_TYPE_LISTEN);
ENERGEST_ON(ENERGEST_TYPE_TRANSMIT);
PRINTF("stm32w: retransmission.\r\n");
DEC_RETRY_CNT();
} else {
CLEAN_TXBUF();
LED_TX_OFF();
PRINTF("stm32w: retransmission failed.\r\n");
}
} else {
CLEAN_TXBUF();
}
}
/* Debug outputs. */
if(status == ST_SUCCESS || status == ST_PHY_ACK_RECEIVED) {
PRINTF("stm32w: return status TX_END\r\n");
} else if(status == ST_MAC_NO_ACK_RECEIVED) {
PRINTF("stm32w: return status TX_END_NOACK\r\n");
} else if(status == ST_PHY_TX_CCA_FAIL) {
PRINTF("stm32w: return status TX_END_CCA_FAIL\r\n");
} else if(status == ST_PHY_TX_UNDERFLOW) {
PRINTF("stm32w: return status TX_END_UNDERFLOW\r\n");
} else {
PRINTF("stm32w: return status TX_END_INCOMPLETE\r\n");
}
}
/*--------------------------------------------------------------------------*/
boolean
ST_RadioDataPendingShortIdIsrCallback(uint16_t shortId)
{
receiving_packet = 1;
return FALSE;
}
/*--------------------------------------------------------------------------*/
boolean
ST_RadioDataPendingLongIdIsrCallback(uint8_t * longId)
{
receiving_packet = 1;
return FALSE;
}
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(stm32w_radio_process, ev, data)
{
int len;
PROCESS_BEGIN();
PRINTF("stm32w_radio_process: started\r\n");
while(1) {
PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL);
PRINTF("stm32w_radio_process: calling receiver callback\r\n");
#if DEBUG > 1
for(uint8_t c = 1; c <= RCVD_PACKET_LEN; c++) {
PRINTF("%x", stm32w_rxbuf[c]);
}
PRINTF("\r\n");
#endif
packetbuf_clear();
len = stm32w_radio_read(packetbuf_dataptr(), PACKETBUF_SIZE);
if(len > 0) {
packetbuf_set_datalen(len);
NETSTACK_RDC.input();
}
if(!RXBUFS_EMPTY()) {
/*
* Some data packet still in rx buffer (this happens because process_poll
* doesn't queue requests), so stm32w_radio_process needs to be called
* again.
*/
process_poll(&stm32w_radio_process);
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
static int
stm32w_radio_read(void *buf, unsigned short bufsize)
{
return read_from_rxbuf(buf, bufsize);
}
/*---------------------------------------------------------------------------*/
void
ST_RadioOverflowIsrCallback(void)
{
PRINTF("stm32w: radio overflow\r\n");
}
/*---------------------------------------------------------------------------*/
void
ST_RadioSfdSentIsrCallback(uint32_t sfdSentTime)
{
}
/*---------------------------------------------------------------------------*/
void
ST_RadioMacTimerCompareIsrCallback(void)
{
}
/*---------------------------------------------------------------------------*/
static int
add_to_rxbuf(uint8_t *src)
{
if(RXBUFS_FULL()) {
return 0;
}
memcpy(stm32w_rxbufs[last], src, src[0] + 1);
#if RADIO_RXBUFS > 1
last = (last + 1) % RADIO_RXBUFS;
if(first == -1) {
first = 0;
}
#endif
return 1;
}
/*---------------------------------------------------------------------------*/
static int
read_from_rxbuf(void *dest, unsigned short len)
{
if(RXBUFS_EMPTY()) { /* Buffers are all empty */
return 0;
}
if(stm32w_rxbufs[first][0] > len) { /* Too large packet for dest. */
len = 0;
} else {
len = stm32w_rxbufs[first][0];
memcpy(dest, stm32w_rxbufs[first] + 1, len);
packetbuf_set_attr(PACKETBUF_ATTR_RSSI, last_rssi);
}
#if RADIO_RXBUFS > 1
ATOMIC(first = (first + 1) % RADIO_RXBUFS;
int first_tmp = first; if(first_tmp == last) {
CLEAN_RXBUFS();}
)
#else
CLEAN_RXBUFS();
#endif
return len;
}
/*---------------------------------------------------------------------------*/
short
last_packet_rssi()
{
return last_rssi;
}
/** @} */