751 lines
18 KiB
C
751 lines
18 KiB
C
/*
|
|
* Copyright (c) 2010, Swedish Institute of Computer Science
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* MaxHeap - A binary maximum heap index for flash memory.
|
|
*
|
|
* The idea behind the MaxHeap index is to write entries sequentially
|
|
* into small buckets, which are indexed in a binary maximum heap.
|
|
* Although sequential writes make the entries unsorted within a
|
|
* bucket, the time to load and scan a single bucket is small. The
|
|
* sequential write is important for flash memories, which are
|
|
* unable to handle multiple rewrites of the same page without doing
|
|
* an expensive erase operation between the rewrites.
|
|
*
|
|
* Each bucket specifies a range (a,b) of values that it accepts.
|
|
* Once a bucket fills up, two buckets are created with the ranges
|
|
* (a,mean) and (mean+1, b), respectively. The entries from the
|
|
* original bucket are then copied into the appropriate new bucket
|
|
* before the old bucket gets deleted.
|
|
* \author
|
|
* Nicolas Tsiftes <nvt@sics.se>
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "cfs/cfs.h"
|
|
#include "cfs/cfs-coffee.h"
|
|
#include "lib/memb.h"
|
|
#include "lib/random.h"
|
|
|
|
#include "db-options.h"
|
|
#include "index.h"
|
|
#include "result.h"
|
|
#include "storage.h"
|
|
|
|
#define DEBUG DEBUG_NONE
|
|
#include "net/ip/uip-debug.h"
|
|
|
|
#define BRANCH_FACTOR 2
|
|
#define BUCKET_SIZE 128
|
|
#define NODE_LIMIT 511
|
|
#define NODE_DEPTH 9
|
|
|
|
#if (1 << NODE_DEPTH) != (NODE_LIMIT + 1)
|
|
#error "NODE_DEPTH is set incorrectly."
|
|
#endif
|
|
|
|
#define EMPTY_NODE(node) ((node)->min == 0 && (node)->max == 0)
|
|
#define EMPTY_PAIR(pair) ((pair)->key == 0 && (pair)->value == 0)
|
|
|
|
typedef uint16_t maxheap_key_t;
|
|
typedef uint16_t maxheap_value_t;
|
|
|
|
#define KEY_MIN 0
|
|
#define KEY_MAX 65535
|
|
|
|
struct heap_node {
|
|
maxheap_key_t min;
|
|
maxheap_key_t max;
|
|
};
|
|
typedef struct heap_node heap_node_t;
|
|
|
|
struct key_value_pair {
|
|
maxheap_key_t key;
|
|
maxheap_value_t value;
|
|
};
|
|
|
|
struct bucket {
|
|
struct key_value_pair pairs[BUCKET_SIZE];
|
|
};
|
|
typedef struct bucket bucket_t;
|
|
|
|
struct heap {
|
|
db_storage_id_t heap_storage;
|
|
db_storage_id_t bucket_storage;
|
|
/* Remember where the next free slot for each bucket is located. */
|
|
uint8_t next_free_slot[NODE_LIMIT];
|
|
};
|
|
typedef struct heap heap_t;
|
|
|
|
struct bucket_cache {
|
|
heap_t *heap;
|
|
uint16_t bucket_id;
|
|
bucket_t bucket;
|
|
};
|
|
|
|
/* Keep a cache of buckets read from storage. */
|
|
static struct bucket_cache bucket_cache[DB_HEAP_CACHE_LIMIT];
|
|
MEMB(heaps, heap_t, DB_HEAP_INDEX_LIMIT);
|
|
|
|
static struct bucket_cache *get_cache(heap_t *, int);
|
|
static struct bucket_cache *get_cache_free(void);
|
|
static void invalidate_cache(void);
|
|
static maxheap_key_t transform_key(maxheap_key_t);
|
|
static int heap_read(heap_t *, int, heap_node_t *);
|
|
static int heap_write(heap_t *, int, heap_node_t *);
|
|
static int heap_insert(heap_t *, maxheap_key_t, maxheap_key_t);
|
|
static int heap_find(heap_t *, maxheap_key_t key, int *iterator);
|
|
#if HEAP_DEBUG
|
|
static void heap_print(heap_t *);
|
|
#endif
|
|
static int bucket_read(heap_t *, int, bucket_t *);
|
|
static struct bucket_cache *bucket_load(heap_t *, int);
|
|
static int bucket_append(heap_t *, int, struct key_value_pair *);
|
|
static int bucket_split(heap_t *, int);
|
|
|
|
static db_result_t create(index_t *);
|
|
static db_result_t destroy(index_t *);
|
|
static db_result_t load(index_t *);
|
|
static db_result_t release(index_t *);
|
|
static db_result_t insert(index_t *, attribute_value_t *, tuple_id_t);
|
|
static db_result_t delete(index_t *, attribute_value_t *);
|
|
static tuple_id_t get_next(index_iterator_t *);
|
|
|
|
index_api_t index_maxheap = {
|
|
INDEX_MAXHEAP,
|
|
INDEX_API_EXTERNAL,
|
|
create,
|
|
destroy,
|
|
load,
|
|
release,
|
|
insert,
|
|
delete,
|
|
get_next
|
|
};
|
|
|
|
static struct bucket_cache *
|
|
get_cache(heap_t *heap, int bucket_id)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < DB_HEAP_CACHE_LIMIT; i++) {
|
|
if(bucket_cache[i].heap == heap && bucket_cache[i].bucket_id == bucket_id) {
|
|
return &bucket_cache[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct bucket_cache *
|
|
get_cache_free(void)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < DB_HEAP_CACHE_LIMIT; i++) {
|
|
if(bucket_cache[i].heap == NULL) {
|
|
return &bucket_cache[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
invalidate_cache(void)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < DB_HEAP_CACHE_LIMIT; i++) {
|
|
if(bucket_cache[i].heap != NULL) {
|
|
bucket_cache[i].heap = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static maxheap_key_t
|
|
transform_key(maxheap_key_t key)
|
|
{
|
|
random_init(key);
|
|
return random_rand();
|
|
}
|
|
|
|
static int
|
|
heap_read(heap_t *heap, int bucket_id, heap_node_t *node)
|
|
{
|
|
if(DB_ERROR(storage_read(heap->heap_storage, node,
|
|
DB_MAX_FILENAME_LENGTH + (unsigned long)bucket_id * sizeof(*node), sizeof(*node)))) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
heap_write(heap_t *heap, int bucket_id, heap_node_t *node)
|
|
{
|
|
if(DB_ERROR(storage_write(heap->heap_storage, node,
|
|
DB_MAX_FILENAME_LENGTH + (unsigned long)bucket_id * sizeof(*node), sizeof(*node)))) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
heap_insert(heap_t *heap, maxheap_key_t min, maxheap_key_t max)
|
|
{
|
|
int i;
|
|
heap_node_t node;
|
|
|
|
PRINTF("DB: Insert node (%ld,%ld) into the heap\n", (long)min, (long)max);
|
|
|
|
if(min > max) {
|
|
return -1;
|
|
}
|
|
|
|
for(i = 0; i < NODE_LIMIT;) {
|
|
if(heap_read(heap, i, &node) == 0) {
|
|
PRINTF("DB: Failed to read heap node %d\n", i);
|
|
return -1;
|
|
}
|
|
|
|
if(EMPTY_NODE(&node)) {
|
|
node.min = min;
|
|
node.max = max;
|
|
if(heap_write(heap, i, &node) == 0) {
|
|
PRINTF("DB: Failed to write heap node %d\n", i);
|
|
return -1;
|
|
}
|
|
return i;
|
|
} else if(node.min <= min && max <= node.max) {
|
|
i = BRANCH_FACTOR * i + 1;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
|
|
PRINTF("DB: No more nodes available\n");
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
heap_find(heap_t *heap, maxheap_key_t key, int *iterator)
|
|
{
|
|
maxheap_key_t hashed_key;
|
|
int i;
|
|
int first_child;
|
|
static heap_node_t node;
|
|
|
|
hashed_key = transform_key(key);
|
|
|
|
for(i = *iterator; i < NODE_LIMIT;) {
|
|
if(heap_read(heap, i, &node) == 0) {
|
|
break;
|
|
}
|
|
if(EMPTY_NODE(&node)) {
|
|
break;
|
|
} else if(node.min <= hashed_key && hashed_key <= node.max) {
|
|
first_child = BRANCH_FACTOR * i + 1;
|
|
|
|
if(first_child >= NODE_LIMIT) {
|
|
break;
|
|
}
|
|
*iterator = first_child;
|
|
return i;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
#if HEAP_DEBUG
|
|
static void
|
|
heap_print(heap_t *heap)
|
|
{
|
|
int level_count;
|
|
int branch_count;
|
|
int branch_amount;
|
|
int i, j;
|
|
heap_node_t node;
|
|
|
|
level_count = 0;
|
|
branch_count = 0;
|
|
branch_amount = BRANCH_FACTOR;
|
|
|
|
for(i = 0;; i++) {
|
|
if(heap_read(heap, i, &node) == 0 || EMPTY_NODE(&node)) {
|
|
break;
|
|
}
|
|
|
|
for(j = 0; j < level_count; j++) {
|
|
PRINTF("\t");
|
|
}
|
|
PRINTF("(%ld,%ld)\n", (long)node.min, (long)node.max);
|
|
if(level_count == 0) {
|
|
level_count++;
|
|
} else if(branch_count + 1 == branch_amount) {
|
|
level_count++;
|
|
branch_count = 0;
|
|
branch_amount = branch_amount * BRANCH_FACTOR;
|
|
} else {
|
|
branch_count++;
|
|
}
|
|
}
|
|
}
|
|
#endif /* HEAP_DEBUG */
|
|
|
|
static int
|
|
bucket_read(heap_t *heap, int bucket_id, bucket_t *bucket)
|
|
{
|
|
size_t size;
|
|
|
|
if(heap->next_free_slot[bucket_id] == 0) {
|
|
size = BUCKET_SIZE;
|
|
} else {
|
|
size = heap->next_free_slot[bucket_id];
|
|
}
|
|
|
|
size *= sizeof(struct key_value_pair);
|
|
|
|
if(DB_ERROR(storage_read(heap->bucket_storage, bucket,
|
|
(unsigned long)bucket_id * sizeof(*bucket), size))) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct bucket_cache *
|
|
bucket_load(heap_t *heap, int bucket_id)
|
|
{
|
|
int i;
|
|
struct bucket_cache *cache;
|
|
|
|
cache = get_cache(heap, bucket_id);
|
|
if(cache != NULL) {
|
|
return cache;
|
|
}
|
|
|
|
cache = get_cache_free();
|
|
if(cache == NULL) {
|
|
invalidate_cache();
|
|
cache = get_cache_free();
|
|
if(cache == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if(bucket_read(heap, bucket_id, &cache->bucket) == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
cache->heap = heap;
|
|
cache->bucket_id = bucket_id;
|
|
|
|
if(heap->next_free_slot[bucket_id] == 0) {
|
|
for(i = 0; i < BUCKET_SIZE; i++) {
|
|
if(EMPTY_PAIR(&cache->bucket.pairs[i])) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
heap->next_free_slot[bucket_id] = i;
|
|
}
|
|
|
|
PRINTF("DB: Loaded bucket %d, the next free slot is %u\n", bucket_id,
|
|
(unsigned)heap->next_free_slot[bucket_id]);
|
|
|
|
return cache;
|
|
}
|
|
|
|
static int
|
|
bucket_append(heap_t *heap, int bucket_id, struct key_value_pair *pair)
|
|
{
|
|
unsigned long offset;
|
|
|
|
if(heap->next_free_slot[bucket_id] >= BUCKET_SIZE) {
|
|
PRINTF("DB: Invalid write attempt to the full bucket %d\n", bucket_id);
|
|
return 0;
|
|
}
|
|
|
|
offset = (unsigned long)bucket_id * sizeof(bucket_t);
|
|
offset += heap->next_free_slot[bucket_id] * sizeof(struct key_value_pair);
|
|
|
|
if(DB_ERROR(storage_write(heap->bucket_storage, pair, offset, sizeof(*pair)))) {
|
|
return 0;
|
|
}
|
|
|
|
heap->next_free_slot[bucket_id]++;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bucket_split(heap_t *heap, int bucket_id)
|
|
{
|
|
heap_node_t node;
|
|
maxheap_key_t mean;
|
|
int small_bucket_index;
|
|
int large_bucket_index;
|
|
|
|
if(heap_read(heap, bucket_id, &node) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
mean = node.min + ((node.max - node.min) / 2);
|
|
|
|
PRINTF("DB: Split bucket %d (%ld, %ld) at mean value %ld\n", bucket_id,
|
|
(long)node.min, (long)node.max, (long)mean);
|
|
|
|
small_bucket_index = heap_insert(heap, node.min, mean);
|
|
if(small_bucket_index < 0) {
|
|
return 0;
|
|
}
|
|
|
|
large_bucket_index = heap_insert(heap, mean + 1, node.max);
|
|
if(large_bucket_index < 0) {
|
|
/*heap_remove(small_bucket);*/
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
insert_item(heap_t *heap, maxheap_key_t key, maxheap_value_t value)
|
|
{
|
|
int heap_iterator;
|
|
int bucket_id, last_good_bucket_id;
|
|
struct key_value_pair pair;
|
|
|
|
for(heap_iterator = 0, last_good_bucket_id = -1;;) {
|
|
bucket_id = heap_find(heap, key, &heap_iterator);
|
|
if(bucket_id < 0) {
|
|
break;
|
|
}
|
|
last_good_bucket_id = bucket_id;
|
|
}
|
|
bucket_id = last_good_bucket_id;
|
|
|
|
if(bucket_id < 0) {
|
|
PRINTF("DB: No bucket for key %ld\n", (long)key);
|
|
return 0;
|
|
}
|
|
|
|
pair.key = key;
|
|
pair.value = value;
|
|
|
|
if(heap->next_free_slot[bucket_id] == BUCKET_SIZE) {
|
|
PRINTF("DB: Bucket %d is full\n", bucket_id);
|
|
if(bucket_split(heap, bucket_id) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Select one of the newly created buckets. */
|
|
bucket_id = heap_find(heap, key, &heap_iterator);
|
|
if(bucket_id < 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if(bucket_append(heap, bucket_id, &pair) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
PRINTF("DB: Inserted key %ld (hash %ld) into the heap at bucket_id %d\n",
|
|
(long)key, (long)transform_key(key), bucket_id);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static db_result_t
|
|
create(index_t *index)
|
|
{
|
|
char heap_filename[DB_MAX_FILENAME_LENGTH];
|
|
char bucket_filename[DB_MAX_FILENAME_LENGTH];
|
|
char *filename;
|
|
db_result_t result;
|
|
heap_t *heap;
|
|
|
|
heap = NULL;
|
|
filename = NULL;
|
|
bucket_filename[0] = '\0';
|
|
|
|
/* Generate the heap file, which is the main index file that is
|
|
referenced from the metadata of the relation. */
|
|
filename = storage_generate_file("heap",
|
|
(unsigned long)NODE_LIMIT * sizeof(heap_node_t));
|
|
if(filename == NULL) {
|
|
PRINTF("DB: Failed to generate a heap file\n");
|
|
return DB_INDEX_ERROR;
|
|
}
|
|
|
|
memcpy(index->descriptor_file, filename,
|
|
sizeof(index->descriptor_file));
|
|
|
|
PRINTF("DB: Generated the heap file \"%s\" using %lu bytes of space\n",
|
|
index->descriptor_file, (unsigned long)NODE_LIMIT * sizeof(heap_node_t));
|
|
|
|
index->opaque_data = heap = memb_alloc(&heaps);
|
|
if(heap == NULL) {
|
|
PRINTF("DB: Failed to allocate a heap\n");
|
|
result = DB_ALLOCATION_ERROR;
|
|
goto end;
|
|
}
|
|
heap->heap_storage = -1;
|
|
heap->bucket_storage = -1;
|
|
|
|
/* Generate the bucket file, which stores the (key, value) pairs. */
|
|
filename = storage_generate_file("bucket",
|
|
(unsigned long)NODE_LIMIT * sizeof(bucket_t));
|
|
if(filename == NULL) {
|
|
PRINTF("DB: Failed to generate a bucket file\n");
|
|
result = DB_INDEX_ERROR;
|
|
goto end;
|
|
}
|
|
memcpy(bucket_filename, filename, sizeof(bucket_filename));
|
|
|
|
PRINTF("DB: Generated the bucket file \"%s\" using %lu bytes of space\n",
|
|
bucket_filename, (unsigned long)NODE_LIMIT * sizeof(bucket_t));
|
|
|
|
/* Initialize the heap. */
|
|
memset(&heap->next_free_slot, 0, sizeof(heap->next_free_slot));
|
|
|
|
heap->heap_storage = storage_open(index->descriptor_file);
|
|
heap->bucket_storage = storage_open(bucket_filename);
|
|
if(heap->heap_storage < 0 || heap->bucket_storage < 0) {
|
|
result = DB_STORAGE_ERROR;
|
|
goto end;
|
|
}
|
|
|
|
if(DB_ERROR(storage_write(heap->heap_storage, &bucket_filename, 0,
|
|
sizeof(bucket_filename)))) {
|
|
result = DB_STORAGE_ERROR;
|
|
goto end;
|
|
}
|
|
|
|
if(heap_insert(heap, KEY_MIN, KEY_MAX) < 0) {
|
|
PRINTF("DB: Heap insertion error\n");
|
|
result = DB_INDEX_ERROR;
|
|
goto end;
|
|
}
|
|
|
|
PRINTF("DB: Created a heap index\n");
|
|
result = DB_OK;
|
|
|
|
end:
|
|
if(result != DB_OK) {
|
|
if(heap != NULL) {
|
|
storage_close(heap->bucket_storage);
|
|
storage_close(heap->heap_storage);
|
|
memb_free(&heaps, heap);
|
|
}
|
|
if(index->descriptor_file[0] != '\0') {
|
|
cfs_remove(heap_filename);
|
|
index->descriptor_file[0] = '\0';
|
|
}
|
|
if(bucket_filename[0] != '\0') {
|
|
cfs_remove(bucket_filename);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static db_result_t
|
|
destroy(index_t *index)
|
|
{
|
|
release(index);
|
|
return DB_INDEX_ERROR;
|
|
}
|
|
|
|
static db_result_t
|
|
load(index_t *index)
|
|
{
|
|
heap_t *heap;
|
|
db_storage_id_t fd;
|
|
char bucket_file[DB_MAX_FILENAME_LENGTH];
|
|
|
|
index->opaque_data = heap = memb_alloc(&heaps);
|
|
if(heap == NULL) {
|
|
PRINTF("DB: Failed to allocate a heap\n");
|
|
return DB_ALLOCATION_ERROR;
|
|
}
|
|
|
|
fd = storage_open(index->descriptor_file);
|
|
if(fd < 0) {
|
|
return DB_STORAGE_ERROR;
|
|
}
|
|
|
|
if(storage_read(fd, bucket_file, 0, sizeof(bucket_file)) !=
|
|
sizeof(bucket_file)) {
|
|
storage_close(fd);
|
|
return DB_STORAGE_ERROR;
|
|
}
|
|
|
|
storage_close(fd);
|
|
|
|
heap->heap_storage = storage_open(index->descriptor_file);
|
|
heap->bucket_storage = storage_open(bucket_file);
|
|
|
|
memset(&heap->next_free_slot, 0, sizeof(heap->next_free_slot));
|
|
|
|
PRINTF("DB: Loaded max-heap index from file %s and bucket file %s\n",
|
|
index->descriptor_file, bucket_file);
|
|
|
|
return DB_OK;
|
|
}
|
|
|
|
static db_result_t
|
|
release(index_t *index)
|
|
{
|
|
heap_t *heap;
|
|
|
|
heap = index->opaque_data;
|
|
|
|
storage_close(heap->bucket_storage);
|
|
storage_close(heap->heap_storage);
|
|
memb_free(&heaps, index->opaque_data);
|
|
return DB_INDEX_ERROR;
|
|
}
|
|
|
|
static db_result_t
|
|
insert(index_t *index, attribute_value_t *key, tuple_id_t value)
|
|
{
|
|
heap_t *heap;
|
|
long long_key;
|
|
|
|
heap = (heap_t *)index->opaque_data;
|
|
|
|
long_key = db_value_to_long(key);
|
|
|
|
if(insert_item(heap, (maxheap_key_t)long_key,
|
|
(maxheap_value_t)value) == 0) {
|
|
PRINTF("DB: Failed to insert key %ld into a max-heap index\n", long_key);
|
|
return DB_INDEX_ERROR;
|
|
}
|
|
return DB_OK;
|
|
}
|
|
|
|
static db_result_t
|
|
delete(index_t *index, attribute_value_t *value)
|
|
{
|
|
return DB_INDEX_ERROR;
|
|
}
|
|
|
|
static tuple_id_t
|
|
get_next(index_iterator_t *iterator)
|
|
{
|
|
struct iteration_cache {
|
|
index_iterator_t *index_iterator;
|
|
int heap_iterator;
|
|
tuple_id_t found_items;
|
|
uint8_t start;
|
|
int visited_buckets[NODE_DEPTH];
|
|
int end;
|
|
};
|
|
static struct iteration_cache cache;
|
|
heap_t *heap;
|
|
maxheap_key_t key;
|
|
int bucket_id;
|
|
int tmp_heap_iterator;
|
|
int i;
|
|
struct bucket_cache *bcache;
|
|
uint8_t next_free_slot;
|
|
|
|
heap = (heap_t *)iterator->index->opaque_data;
|
|
key = *(maxheap_key_t *)&iterator->min_value;
|
|
|
|
if(cache.index_iterator != iterator || iterator->next_item_no == 0) {
|
|
/* Initialize the cache for a new search. */
|
|
cache.end = NODE_DEPTH - 1;
|
|
cache.found_items = cache.start = 0;
|
|
cache.index_iterator = iterator;
|
|
|
|
/* Find the downward path through the heap consisting of all nodes
|
|
that could possibly contain the key. */
|
|
for(i = tmp_heap_iterator = 0; i < NODE_DEPTH; i++) {
|
|
cache.visited_buckets[i] = heap_find(heap, key, &tmp_heap_iterator);
|
|
if(cache.visited_buckets[i] < 0) {
|
|
cache.end = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
cache.heap_iterator = cache.end;
|
|
}
|
|
|
|
/*
|
|
* Search for the key in each heap node, starting from the bottom
|
|
* of the heap. Because the bottom nodes contain are very narrow
|
|
* range of keys, there is a much higher chance that the key will be
|
|
* there rather than at the top.
|
|
*/
|
|
for(; cache.heap_iterator >= 0; cache.heap_iterator--) {
|
|
bucket_id = cache.visited_buckets[cache.heap_iterator];
|
|
|
|
PRINTF("DB: Find key %lu in bucket %d\n", (unsigned long)key, bucket_id);
|
|
|
|
if((bcache = bucket_load(heap, bucket_id)) == NULL) {
|
|
PRINTF("DB: Failed to load bucket %d\n", bucket_id);
|
|
return INVALID_TUPLE;
|
|
}
|
|
|
|
/* Because keys are stored in an unsorted order in the bucket, we
|
|
* need to search the bucket sequentially. */
|
|
next_free_slot = heap->next_free_slot[bucket_id];
|
|
for(i = cache.start; i < next_free_slot; i++) {
|
|
if(bcache->bucket.pairs[i].key == key) {
|
|
if(cache.found_items++ == iterator->next_item_no) {
|
|
iterator->next_item_no++;
|
|
cache.start = i + 1;
|
|
PRINTF("DB: Found key %ld with value %lu\n", (long)key,
|
|
(unsigned long)bcache->bucket.pairs[i].value);
|
|
return (tuple_id_t)bcache->bucket.pairs[i].value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(VALUE_INT(&iterator->min_value) == VALUE_INT(&iterator->max_value)) {
|
|
PRINTF("DB: Could not find key %ld in the index\n", (long)key);
|
|
return INVALID_TUPLE;
|
|
}
|
|
|
|
iterator->next_item_no = 0;
|
|
VALUE_INT(&iterator->min_value)++;
|
|
|
|
return get_next(iterator);
|
|
}
|