nes-proj/drivers/cpu/arm/aducrf101/Common/radioeng.c

1791 lines
64 KiB
C

/**
* Copyright (c) 2014, Analog Devices, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted (subject to the limitations in the
* disclaimer below) provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* - Neither the name of Analog Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
* GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
* HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
@file radioeng.c
@brief Radio Interface Engine Functions
@version v1.0
@author PAD CSE group, Analog Devices Inc
@date May 08th 2013
**/
#include "aducrf101-include.h"
// 1.0 of the Engine
#define RIE_ENGINE_MAJOR_VERSION 1UL
#define RIE_ENGINE_MINOR_VERSION 0UL
#define RADIO_SPI_CLK_FREQ 4000000 // 4 MHz SPI CLK for radio interface
#define SYSTEM_UCLK 16000000 // 16 MHz UCLK
// Default Radio Parameters
#define DEFAULT_CHNL_FREQ 915000000
#define FREQ_CNVRT_VAL 0.00252061538
// Defines for radio memory mapped areas
#define PACKETRAM_START 0x10
#define PACKETRAM_LEN 240
#define BBRAM_START 0x100
#define PR_var_tx_mode_ADR 0x00D
// PrF Table 35
#define PARAM_TX_NORMAL_PACKET 0
#define PARAM_TX_PREAMBLE_FOREVER 2
#define PARAM_TX_CARRIER_FOREVER 3
#define gpio_configure_sport_mode_0 0xA0
#define gpio_configure_default 0x00
#define MCR_pa_level_mcr_Adr 0x307
#define MCR_rssi_readback_Adr 0x312
#define MCR_gpio_configure_Adr 0x3fa
#define MCR_ext_uc_clk_divide_Adr 0x32e
#define MCR_interrupt_source_0_Adr 0x336
#define MCR_interrupt_source_1_Adr 0x337
// Macros for manual GPIO checking of Radio MISO pin P2.0 (SPI0)
#define RADIO_MISO_IN GP2IN_IN0_BBA
// Macros for manual GPIO control of P2.3 (Radio SPI CS) (SPI0)
#define RADIO_CSN_DEASSERT (pADI_GP2->GPSET = GP2SET_SET3)
#define RADIO_CSN_ASSERT (pADI_GP2->GPCLR = GP2CLR_CLR3)
// Macros for Sending\Receiving single bytes via SPI
#define SEND_SPI(x) pADI_SPI0->SPITX = x
#define WAIT_SPI_RX while((pADI_SPI0->SPISTA & SPISTA_RXFSTA_MSK) == 0x0);
#define READ_SPI pADI_SPI0->SPIRX
// Bit Manipulation Macros
#define MSKSET_VAL(byte,numbits,offset,value) ((byte & ~(((0x1 << numbits)-1) << offset)) | value)
/*************************************************************************/
/* Local Types */
/*************************************************************************/
/*************************************************************************/
/* Radio Command Codes */
/*************************************************************************/
typedef enum
{
CMD_SYNC = 0xA2, // Synchronizatio
CMD_PHY_OFF = 0xB0, // Transition to state PHY_OFF
CMD_PHY_ON = 0xB1, // transition to state PHY_ON
CMD_PHY_RX = 0xB2, // transition to state PHY_RX
CMD_PHY_TX = 0xB5, // transition to state PHY_TX
CMD_PHY_SLEEP = 0xBA, // transition to state PHY_SLEEP
CMD_CONFIG_DEV = 0xBB, // Apply Radio Configuration
CMD_GET_RSSI = 0xBC, // Performs an RSSI measurement
CMD_HW_RESET = 0xC8, // Power Down radio
SPI_MEM_WR = 0x18, // Sequential SPI Write
SPI_MEM_RD = 0x38, // Sequential SPI Read
SPI_NOP = 0xFF // No operation
} Radio_CmdCodes;
/*************************************************************************/
/* Firmware States */
/*************************************************************************/
typedef enum
{
FW_INIT = 0x0F, // Radio Starting Up
FW_BUSY = 0x00, // Radio not completed current operation
FW_RSSI = 0x05, // Performing CMD_GET_RSSI
FW_OFF = 0x11, // Radio is OFF
FW_ON = 0x12, // Radio is ON
FW_RX = 0x13, // Radio is in receive mode
FW_TX = 0x14, // Radio is in transmit mode
} RadioState;
/*************************************************************************/
/* Status Byte Masks */
/*************************************************************************/
#define STATUS_BYTE_FW_STATE (0x1F << 0)
#define STATUS_BYTE_CMD_READY (0x1 << 5)
#define STATUS_BYTE_IRQ_STATUS (0x1 << 6)
#define STATUS_BYTE_SPI_READY (0x1 << 7)
/*************************************************************************/
/* SPI Memory Access Defs */
/*************************************************************************/
#define SPI_MEMCMD_BYTE0_ADR_MSK (0x3 << 0)
#define SPI_MEMCMD_BYTE0_CMD_BITOFFSET 3
#define SPI_MEMCMD_BYTE0_CMD_MSK (0x1F << SPI_MEMCMD_BYTE0_CMD_BITOFFSET)
/*************************************************************************/
/* Radio Configuration Structure */
/*************************************************************************/
/**
\internal Hide from Doxegen
\var TyRadioConfiguration
**/
typedef struct
{
RIE_U8 interrupt_mask_0_r; // 0x100
RIE_U8 cfg_101_r; // 0x101
RIE_U8 cfg_102_r; // 0x102
RIE_U8 cfg_103_r; // 0x103
RIE_U8 cfg_104_r; // 0x104
RIE_U8 cfg_105_r; // 0x105
RIE_U8 cfg_106_r; // 0x106
RIE_U8 cfg_107_r; // 0x107
RIE_U8 cfg_108_r; // 0x108
RIE_U8 channel_freq_0_r; // 0x109
RIE_U8 channel_freq_1_r; // 0x10A
RIE_U8 channel_freq_2_r; // 0x10B
RIE_U8 cfg_10C_r; // 0x10C
RIE_U8 cfg_10D_r; // 0x10D
RIE_U8 cfg_10E_r; // 0x10E
RIE_U8 cfg_10F_r; // 0x10F
RIE_U8 cfg_110_r; // 0x110
RIE_U8 cfg_111_r; // 0x111
RIE_U8 cfg_112_r; // 0x112
RIE_U8 cfg_113_r; // 0x113
RIE_U8 radio_cfg_8_r; // 0x114
RIE_U8 radio_cfg_9_r; // 0x115
RIE_U8 cfg_116_r; // 0x116
RIE_U8 cfg_117_r; // 0x117
RIE_U8 image_reject_cal_phase_r; // 0x118
RIE_U8 image_reject_cal_amplitude_r; // 0x119
RIE_U8 cfg_11A_r; // 0x11A
RIE_U8 cfg_11B_r; // 0x11B
RIE_U8 symbol_mode_r; // 0x11C
RIE_U8 cfg_11D_r; // 0x11D
RIE_U8 cfg_11E_r; // 0x11E
RIE_U8 cfg_11F_r; // 0x11F
RIE_U8 cfg_120_r; // 0x120
RIE_U8 cfg_121_r; // 0x121
RIE_U8 cfg_122_r; // 0x122
RIE_U8 cfg_123_r; // 0x123
RIE_U8 tx_base_adr_r; // 0x124
RIE_U8 rx_base_adr_r; // 0x125
RIE_U8 packet_length_control_r; // 0x126
RIE_U8 packet_length_max_r; // 0x127
RIE_U8 cfg_128_r; // 0x128
RIE_U8 cfg_129_r; // 0x129
RIE_U8 cfg_12A_r; // 0x12A
RIE_U8 cfg_12B_r; // 0x12B
RIE_U8 cfg_12C_r; // 0x12C
RIE_U8 cfg_12D_r; // 0x12D
RIE_U8 cfg_12E_r; // 0x12E
RIE_U8 cfg_12F_r; // 0x12F
RIE_U8 cfg_130_r; // 0x130
RIE_U8 cfg_131_r; // 0x131
RIE_U8 cfg_132_r; // 0x132
RIE_U8 cfg_133_r; // 0x133
RIE_U8 cfg_134_r; // 0x134
RIE_U8 cfg_135_r; // 0x135
RIE_U8 cfg_136_r; // 0x136
RIE_U8 cfg_137_r; // 0x137
RIE_U8 cfg_138_r; // 0x138
RIE_U8 cfg_139_r; // 0x139
RIE_U8 cfg_13A_r; // 0x13A
RIE_U8 cfg_13B_r; // 0x13B
RIE_U8 cfg_13C_r; // 0x13C
RIE_U8 cfg_13D_r; // 0x13D
RIE_U8 cfg_13E_r; // 0x13E
RIE_U8 cfg_13F_r; // 0x13F
} TyRadioConfiguration;
/*************************************************************************/
/* Radio Configuration Constants */
/*************************************************************************/
#define interrupt_mask_0_interrupt_tx_eof (0x1 << 4)
#define interrupt_mask_0_interrupt_crc_correct (0x1 << 2)
#define packet_length_control_length_offset_offset (0)
#define packet_length_control_length_offset_minus0 (0x4 << packet_length_control_length_offset_offset)
#define packet_length_control_data_mode_offset (3)
#define packet_length_control_data_mode_packet (0x0 << packet_length_control_data_mode_offset)
#define packet_length_control_crc_en_yes (0x1 << 5)
#define packet_length_control_packet_len_variable (0x0 << 6)
#define packet_length_control_packet_len_fixed (0x1 << 6)
#define packet_length_control_data_byte_lsb (0x0 << 7)
#define symbol_mode_symbol_length_8_bit (0 << 0)
#define symbol_mode_data_whitening_disabled (0 << 3)
#define symbol_mode_data_whitening_enabled (1 << 3)
#define symbol_mode_eight_ten_enc_disabled (0 << 4 )
#define symbol_mode_prog_crc_en_disabled (0 << 5)
#define symbol_mode_manchester_enc_enabled (1 << 6)
#define radio_cfg_8_pa_single_diff_sel_single_ended (0x0 << 7)
#define radio_cfg_8_pa_single_diff_sel_differential (0x1 << 7)
#define radio_cfg_8_pa_power_numbits (4)
#define radio_cfg_8_pa_power_offset (3)
#define radio_cfg_8_pa_power_setting_63 (0xF << radio_cfg_8_pa_power_offset)
#define radio_cfg_8_pa_ramp_numbits (3)
#define radio_cfg_8_pa_ramp_offset (0)
#define radio_cfg_8_pa_ramp_16 (0x5 << radio_cfg_8_pa_ramp_offset)
#define radio_cfg_9_demod_scheme_offset (0)
#define radio_cfg_9_demod_scheme_FSK (0x0 << radio_cfg_9_demod_scheme_offset)
#define radio_cfg_9_mod_scheme_numbits (3)
#define radio_cfg_9_mod_scheme_offset (3)
#define radio_cfg_9_mod_scheme_2_level_FSK (0x0 << radio_cfg_9_mod_scheme_offset)
#define radio_cfg_9_mod_scheme_2_level_GFSK (0x1 << radio_cfg_9_mod_scheme_offset)
#define radio_cfg_9_ifbw_numbits (2)
#define radio_cfg_9_ifbw_offset (6)
#define radio_cfg_9_ifbw_100kHz (0x0 << radio_cfg_9_ifbw_offset)
#define radio_cfg_9_ifbw_150kHz (0x1 << radio_cfg_9_ifbw_offset)
#define radio_cfg_9_ifbw_200kHz (0x2 << radio_cfg_9_ifbw_offset)
#define radio_cfg_9_ifbw_300kHz (0x3 << radio_cfg_9_ifbw_offset)
/*************************************************************************/
/* Local Variables */
/*************************************************************************/
static TyRadioConfiguration RadioConfiguration;
static RIE_BOOL bRadioConfigurationChanged = RIE_FALSE;
static RIE_BOOL bTestModeEnabled = RIE_FALSE;
static RIE_U32 DataRate = 38400;
static volatile RIE_BOOL bPacketTx = RIE_FALSE;
static volatile RIE_BOOL bPacketRx = RIE_FALSE;
const RIE_U8 DR_38_4kbps_Dev20kHz_Configuration[] =
{
0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x00,0x76,0x62,0x21,
// 0 1 2 3 4 5 6 7 8 9 A B
0x80,0x01,0xC8,0x20,0x0E,0x00,0x00,0x00,0xFD,0x00,0x0B,0x37,
0x16,0x07,
0x40,0x0C,0x00,0x0C,0x00,0x00,
0x10,0x00,0xC3,0x36,0x10,0x10,0x24,0xF0,0x2A,0x00,0x2F,0x19,0x5E,0x46,0x5F,0x78,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
const RIE_U8 DR_300_0kbps_Dev75_0kHz_Configuration[] =
{
0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x00,0x76,0x62,0x21,
// 0 1 2 3 4 5 6 7 8 9 A B
0xB8,0x2B,0xEE,0x0B,0x70,0x00,0x03,0x00,0xFD,0xC0,0x0B,0x37,
0x16,0x07,
0x40,0x0C,0x00,0x0C,0x00,0x00,
0x10,0x00,0xC3,0x36,0x10,0x10,0x24,0xF0,0x2A,0x00,0x2F,0x19,0x5E,0x46,0x5F,0x78,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
const RIE_U8 DR_1_0kbps_Dev10_0kHz_Configuration[] =
{
0x14,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x00,0x76,0x62,0x21,
// 0 1 2 3 4 5 6 7 8 9 A B
0x0A,0x00,0x64,0x41,0x01,0x00,0x02,0x00,0xFD,0x00,0x0B,0x37,
0x16,0x07,
0x40,0x0C,0x00,0x0C,0x00,0x00,
0x10,0x00,0xC3,0x36,0x10,0x10,0x24,0xF0,0x2A,0x00,0x2F,0x19,0x5E,0x46,0x5F,0x78,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
/*************************************************************************/
/* Local Functions */
/*************************************************************************/
static RIE_Responses RadioSPIXferByte (RIE_U8 ucByte,
RIE_U8 * pData);
static RIE_Responses RadioSendCommandBytes (RIE_U8 * pCmdBytes,
RIE_U8 NumBytes);
static RIE_Responses RadioSendCommandNoWait (Radio_CmdCodes CmdCode);
static RIE_Responses RadioSendCommandWait (Radio_CmdCodes CmdCode);
static RIE_Responses RadioMMapRead (RIE_U32 ulAdr,
RIE_U32 ulLen,
RIE_U8 * pData);
static RIE_Responses RadioMMapWrite (RIE_U32 ulAdr,
RIE_U32 ulLen,
RIE_U8 * pData);
static RIE_Responses RadioReadState (RadioState * pState);
static RIE_Responses RadioWaitOnState (RadioState FinalState);
static RIE_Responses RadioWaitForPowerUp (void);
static RIE_Responses RadioSyncComms (void);
static RIE_Responses SetRadioConfiguration (RIE_BaseConfigs BaseConfig);
static RIE_Responses RadioCommitRadioConfig (void);
static RIE_Responses RadioConfigure (void);
static RIE_Responses RadioToOnMode (void);
static RIE_Responses RadioToOffMode (void);
static RIE_Responses RadioWaitOnCmdLdr (void);
/*************************************************************************/
/* Functions Implementations - Start */
/*************************************************************************/
/**
@fn RIE_Responses RadioGetAPIVersion(RIE_U32 *pVersion)
@brief Return the Radio Interface Engine API Version
@param pVersion :{}
pVersion Storage for Radio Interface Engine API version.
@code
RIE_U32 Version;
Response = RadioGetAPIVersion(&Version);
@endcode
@return RIE_Responses Error code.
**/
RIE_Responses RadioGetAPIVersion(RIE_U32 *pVersion)
{
RIE_Responses Response = RIE_Success;
if (pVersion)
*pVersion = RIE_ENGINE_MINOR_VERSION | (RIE_ENGINE_MAJOR_VERSION << 8);
return Response;
}
/**
@fn RIE_U32 RadioSwitchConfig(RIE_BaseConfigs BaseConfig)
@brief Change the Radio to using specified configuration.
@param BaseConfig :{DR_1_0kbps_Dev10_0kHz, DR_38_4kbps_Dev20kHz, DR_300_0kbps_Dev75_0kHz}
- DR_1_0kbps_Dev10_0kHz Base configuration of 1 kbps datarate, 10.0 kHz frequency deviation.
- DR_38_4kbps_Dev20kHz Base configuration of 38.4 kbps datarate, 20 kHz frequency deviation.
- DR_300_0kbps_Dev75_0kHz Base configuration of 300 kbps datarate, 75 kHz frequency deviation.
@pre
RadioInit() must be called before this function is called.
@return RIE_Responses Error code.
**/
RIE_Responses RadioSwitchConfig(RIE_BaseConfigs BaseConfig)
{
RIE_Responses Response = RIE_Success;
if(Response == RIE_Success)
Response = RadioToOffMode();
if(Response == RIE_Success)
Response = SetRadioConfiguration(BaseConfig);
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if(Response == RIE_Success)
Response = RadioToOnMode();
return Response;
}
/**
@fn RIE_U32 RadioInit(RIE_BaseConfigs BaseConfig)
@brief Initialise the Radio, using specified configuration.
@param BaseConfig :{DR_1_0kbps_Dev10_0kHz , DR_38_4kbps_Dev20kHz ,DR_300_0kbps_Dev75_0kHz }
- DR_1_0kbps_Dev10_0kHz Base configuration of 1 kbps datarate, 10.0 kHz frequency deviation.
- DR_38_4kbps_Dev20kHz Base configuration of 38.4 kbps datarate, 20 kHz frequency deviation.
- DR_300_0kbps_Dev75_0kHz Base configuration of 300 kbps datarate, 75 kHz frequency deviation.
@note
This must be called before any other function is called.
@return RIE_Responses Error code.
**/
RIE_Responses RadioInit(RIE_BaseConfigs BaseConfig)
{
RIE_Responses Response = RIE_Success;
// Disable the radio interrupt until we have initialised the radio
NVIC_DisableIRQ(UHFTRX_IRQn);
// Initialise GPIO Port 2 for Radio Use
pADI_GP2->GPCON = GP2CON_CON0_SPI0MISO | GP2CON_CON1_SPI0SCLK |
GP2CON_CON2_SPI0MOSI | GP2CON_CON3_GPIO |
GP2CON_CON4_IRQ8 | GP2CON_CON5_GPIO |
GP2CON_CON6_GPIO | GP2CON_CON7_GPIOIRQ7;
pADI_GP2->GPOEN = GP2OEN_OEN0_IN | GP2OEN_OEN1_IN |
GP2OEN_OEN2_IN | GP2OEN_OEN3_OUT |
GP2OEN_OEN4_IN | GP2OEN_OEN5_IN |
GP2OEN_OEN6_IN | GP2OEN_OEN7_IN;
// Disable the PULL-Up on P2.4 which is connected to the radio
GP2PUL_PUL4_BBA = 0x0;
// Configure the SPI Interface to the Radio and flush it
pADI_SPI0->SPIDIV = ((SYSTEM_UCLK/RADIO_SPI_CLK_FREQ)/2)-0x1;
pADI_SPI0->SPICON = SPICON_MASEN | // Master mode
SPICON_TIM | // Interrupt on transmit
SPICON_TFLUSH | // Flush FIFO
SPICON_RFLUSH | // Flush FIFO
SPICON_ENABLE;
pADI_SPI0->SPICON = SPICON_MASEN | // Master mode
SPICON_TIM | // Interrupt on transmit
SPICON_ENABLE;
// Initialise the chip select line to starting position
RADIO_CSN_DEASSERT;
// Power it down and up again to return to a known state
// which will be PHY_OFF.
// This will clear any pre-existing radio interrupt before
// we enable the Cortex interrupt handling of it
if(Response == RIE_Success)
Response = RadioPowerOff();
// Configure a "high level" radio interrupt ...
pADI_INTERRUPT->EI2CFG = EI2CFG_IRQ8MDE_HIGHLEVEL | EI2CFG_IRQ8EN;
// ... and set it up in the NVIC so that our interrupt handler is called
// when the radio wants our attention. Clear any pre-existing condition
// before enabling the interrupt.
pADI_INTERRUPT->EICLR = EICLR_IRQ8;
NVIC_ClearPendingIRQ(UHFTRX_IRQn);
NVIC_SetPriority (UHFTRX_IRQn,0x0);
NVIC_EnableIRQ (UHFTRX_IRQn);
if(Response == RIE_Success)
Response = RadioWaitForPowerUp();
if(Response == RIE_Success)
Response = RadioSyncComms();
if(Response == RIE_Success)
Response = RadioToOffMode();
if(Response == RIE_Success)
Response = SetRadioConfiguration(BaseConfig);
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if(Response == RIE_Success)
Response = RadioToOnMode();
return Response;
}
/**
@fn RIE_U32 RadioDeInit(void)
@brief Deinitialise the Radio, and power it down.
@note
This can be called independently of all other functions to power down
the radio
@return RIE_Responses Error code.
**/
RIE_Responses RadioDeInit(void)
{
RIE_Responses Response = RIE_Success;
// Disable the radio interrupt
NVIC_DisableIRQ(UHFTRX_IRQn);
// Initialise GPIO Port 2 for Radio Use
pADI_GP2->GPCON = GP2CON_CON0_SPI0MISO | GP2CON_CON1_SPI0SCLK |
GP2CON_CON2_SPI0MOSI | GP2CON_CON3_GPIO |
GP2CON_CON4_IRQ8 | GP2CON_CON5_GPIO |
GP2CON_CON6_GPIO | GP2CON_CON7_GPIOIRQ7;
pADI_GP2->GPOEN = GP2OEN_OEN0_IN | GP2OEN_OEN1_IN |
GP2OEN_OEN2_IN | GP2OEN_OEN3_OUT |
GP2OEN_OEN4_IN | GP2OEN_OEN5_IN |
GP2OEN_OEN6_IN | GP2OEN_OEN7_IN;
// Enable the pull-up as we are powering down the radion
GP2PUL_PUL4_BBA = 0x1;
// Configure the SPI Interface to the Radio and flush it
pADI_SPI0->SPIDIV = ((SYSTEM_UCLK/RADIO_SPI_CLK_FREQ)/2)-0x1;
pADI_SPI0->SPICON = SPICON_MASEN | // Master mode
SPICON_TIM | // Interrupt on transmit
SPICON_TFLUSH | // Flush FIFO
SPICON_RFLUSH | // Flush FIFO
SPICON_ENABLE;
pADI_SPI0->SPICON = SPICON_MASEN | // Master mode
SPICON_TIM | // Interrupt on transmit
SPICON_ENABLE;
// Initialise the chip select line to starting position
RADIO_CSN_DEASSERT;
// Power it down
Response = RadioSendCommandNoWait(CMD_HW_RESET);
return Response;
}
/**
@fn RIE_Responses RadioPowerOff(void)
@brief Shutdown the radio and place it in its lowest power sleep mode.
@pre
RadioInit() must be called before this function is called.
@return RIE_Response Error code.
**/
RIE_Responses RadioPowerOff(void)
{
volatile RIE_U32 ulDelay;
RIE_Responses Response = RIE_Success;
Response = RadioSendCommandNoWait(CMD_HW_RESET);
// Delay for approximately 1 ms
ulDelay = 0x1000;
while (ulDelay--);
return Response;
}
/**
@fn RIE_Responses RadioTerminateRadioOp(void)
@brief Terminate a currently running radio RX or TX operation.
@pre RadioInit() must be called before this function is called.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioRxPacketFixedLen(12);
// Delay for a while waiting for a packet
if (RIE_Response == RIE_Success)
{
// Abort the waiting
RIE_Response = RadioTerminateRadioOp();
}
@endcode
@return RIE_Responses Error code
**/
RIE_Responses RadioTerminateRadioOp (void)
{
RIE_Responses Response = RIE_Success;
Response = RadioToOnMode();
return Response;
}
/**
@fn RIE_Responses RadioSetFrequency(RIE_U32 Frequency)
@brief Set frequency for radio communications
@param Frequency :{431000000-928000000}
- This must be within the available bands of the radio:
- 431000000Hz to 464000000Hz and
- 862000000Hz to 928000000Hz.
@pre RadioInit() must be called before this function is called.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioSetFrequency(915000000);
@endcode
@return RIE_Responses Error code
**/
RIE_Responses RadioSetFrequency(RIE_U32 Frequency)
{
RIE_Responses Response = RIE_Success;
RIE_U32 EncodedFrequency;
bRadioConfigurationChanged = RIE_TRUE;
EncodedFrequency = (RIE_U32)(Frequency * FREQ_CNVRT_VAL);
RadioConfiguration.channel_freq_0_r = (EncodedFrequency >> 0) & 0xFF;
RadioConfiguration.channel_freq_1_r = (EncodedFrequency >> 8) & 0xFF;
RadioConfiguration.channel_freq_2_r = (EncodedFrequency >> 16)& 0xFF;
if (Frequency >= 862000000)
{
RadioConfiguration.image_reject_cal_amplitude_r = 0x07;
RadioConfiguration.image_reject_cal_phase_r = 0x16;
}
else
{
RadioConfiguration.image_reject_cal_amplitude_r = 0x03;
RadioConfiguration.image_reject_cal_phase_r = 0x08;
}
return Response;
}
/**
@fn RIE_Responses RadioSetModulationType(RIE_ModulationTypes ModulationType)
@brief Set the Radio Transmitter Modulation Type. Can be FSK_Modulation or GFSK_Modulation.
@param ModulationType :{DR_1_0kbps_Dev10_0kHz , DR_38_4kbps_Dev20kHz ,DR_300_0kbps_Dev75_0kHz }
- DR_1_0kbps_Dev10_0kHz Base configuration of 1 kbps datarate, 10.0 kHz frequency deviation.
- DR_38_4kbps_Dev20kHz Base configuration of 38.4 kbps datarate, 20 kHz frequency deviation.
- DR_300_0kbps_Dev75_0kHz Base configuration of 300 kbps datarate, 75 kHz frequency deviation.
@pre RadioInit() must be called before this function is called.
@code
Response = RadioSetModulationType(GFSK_Modulation);
@endcode
@note FSK_Modulation is used by default.
@return RIE_Responses Error code
**/
RIE_Responses RadioSetModulationType(RIE_ModulationTypes ModulationType)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucNewCode;
RIE_U8 ucNewRegVal = RadioConfiguration.radio_cfg_9_r;
switch (ModulationType)
{
case FSK_Modulation:
ucNewCode = radio_cfg_9_mod_scheme_2_level_FSK;
break;
case GFSK_Modulation:
ucNewCode = radio_cfg_9_mod_scheme_2_level_GFSK;
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
if(Response == RIE_Success)
{
ucNewRegVal = MSKSET_VAL(RadioConfiguration.radio_cfg_9_r,
radio_cfg_9_mod_scheme_numbits,
radio_cfg_9_mod_scheme_offset,
ucNewCode);
if (ucNewRegVal != RadioConfiguration.radio_cfg_9_r )
{
bRadioConfigurationChanged = RIE_TRUE;
RadioConfiguration.radio_cfg_9_r = ucNewRegVal;
}
}
return Response;
}
/**
@fn RIE_Responses RadioPayldManchesterEncode(RIE_BOOL bEnable)
@brief Enable or Disable Manchester Encoding of payload data.
Manchester encoding can be used to ensure a dc-free (zero mean)
transmission.
A Binary 0 is mapped to 10, and a Binary 1 is mapped to 01.
Manchester encoding and decoding are applied to the payload data
and the CRC.
@param bEnable :{RIE_FALSE,RIE_TRUE}
- RIE_TRUE if Manchester Encoding is to be enabled.
- RIE_FALSE if disabled.
@pre RadioInit() must be called before this function is called.
@code
Response = RadioPayldManchesterEncode(RIE_TRUE);
@endcode
@note Manchester Encoding is disabled by default.
@return RIE_Responses Error code
**/
RIE_Responses RadioPayldManchesterEncode(RIE_BOOL bEnable)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucNewRegVal = RadioConfiguration.symbol_mode_r;
switch (bEnable)
{
case RIE_FALSE:
ucNewRegVal &= ~symbol_mode_manchester_enc_enabled;
break;
case RIE_TRUE:
ucNewRegVal |= symbol_mode_manchester_enc_enabled;
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
if(Response == RIE_Success)
{
if (ucNewRegVal != RadioConfiguration.symbol_mode_r )
{
bRadioConfigurationChanged = RIE_TRUE;
RadioConfiguration.symbol_mode_r = ucNewRegVal;
}
}
return Response;
}
/**
@fn RIE_Responses RadioPayldDataWhitening(RIE_BOOL bEnable)
@brief Enable or Disable Data Whitening of payload data.
Data whitening can be employed to avoid long runs of 1s or 0s
in the transmitted data stream.
This ensures sufficient bit transitions in the packet, which
aids in receiver clock and data recovery because the encoding
breaks up long runs of 1s or 0s in the transmit packet.
The data, excluding the preamble and sync word, is automatically
whitened before transmission by XORing the data with an 8-bit
pseudorandom sequence.
At the receiver, the data is XORed with the same pseudorandom
sequence, thereby reversing the whitening.
The linear feedback shift register polynomial used is x7 + x1 + 1.
@param bEnable :{RIE_FALSE, RIE_TRUE}
- RIE_TRUE if Manchester Encoding is to be enabled.
- RIE_FALSE if disabled.
@pre RadioInit() must be called before this function is called.
@code
Response = RadioPayldDataWhitening(RIE_TRUE);
@endcode
@note Data Whitening is disabled by default.
@return RIE_Responses Error code
**/
RIE_Responses RadioPayldDataWhitening(RIE_BOOL bEnable)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucNewRegVal = RadioConfiguration.symbol_mode_r;
switch (bEnable)
{
case RIE_FALSE:
ucNewRegVal &= ~symbol_mode_data_whitening_enabled;
break;
case RIE_TRUE:
ucNewRegVal |= symbol_mode_data_whitening_enabled;
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
if(Response == RIE_Success)
{
if (ucNewRegVal != RadioConfiguration.symbol_mode_r )
{
bRadioConfigurationChanged = RIE_TRUE;
RadioConfiguration.symbol_mode_r = ucNewRegVal;
}
}
return Response;
}
/**
@fn RIE_Responses RadioTxPacketFixedLen(RIE_U8 Len, RIE_U8 *pData)
@brief Transmit a fixed length packet.
@param Len :{1-240} Length of packet to be transmitted.
@param pData :{} Data bytes to be transmitted.
@pre RadioInit() must be called before this function is called.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxSetPA(DifferentialPA,PowerLevel15);
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxPacketFixedLen(12, "HELLO WORLD");
while (!RadioTxPacketComplete());
@endcode
@return RIE_Responses Error code
**/
RIE_Responses RadioTxPacketFixedLen(RIE_U8 Len, RIE_U8 *pData)
{
RIE_Responses Response = RIE_Success;
bPacketTx = RIE_FALSE;
if (Len > PACKETRAM_LEN)
Response = RIE_InvalidParamter;
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioMMapWrite(PACKETRAM_START, Len, pData);
if (Response == RIE_Success)
{
RadioConfiguration.packet_length_max_r = Len;
RadioConfiguration.packet_length_control_r |= packet_length_control_packet_len_fixed;
}
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_TX);
return Response;
}
/**
@fn RIE_Responses RadioTxPacketVariableLen(RIE_U8 Len, RIE_U8 *pData)
@brief Transmit a Variable length packet.
@param Len :{1-240} Length of packet to be transmitted.
@param pData :{} Data bytes to be transmitted.
@pre RadioInit() must be called before this function is called.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxSetPA(DifferentialPA,PowerLevel15);
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxPacketVariableLen(12, "HELLO WORLD");
while (!RadioTxPacketComplete());
@endcode
@return RIE_Responses Error code
**/
RIE_Responses RadioTxPacketVariableLen(RIE_U8 Len, RIE_U8 *pData)
{
RIE_Responses Response = RIE_Success;
bPacketTx = RIE_FALSE;
Len += 0x1;
if (Len > PACKETRAM_LEN)
Response = RIE_InvalidParamter;
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioMMapWrite(PACKETRAM_START, 0x1, &Len);
if (Response == RIE_Success)
Response = RadioMMapWrite(PACKETRAM_START+0x1, Len-1, pData);
if (Response == RIE_Success)
{
RadioConfiguration.packet_length_max_r = PACKETRAM_LEN;
RadioConfiguration.packet_length_control_r &= ~packet_length_control_packet_len_fixed;
}
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_TX);
return Response;
}
/**
@fn RIE_BOOL RadioTxPacketComplete(void)
@brief Checks if a packet has finished transmitting
@pre RadioInit() must be called before this function is called.
@pre RadioRxPacketFixedLen() or equivalent should be called first.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxSetPA(DifferentialPA,PowerLevel15);
if (RIE_Response == RIE_Success)
RIE_Response = RadioTxPacketFixedLen(12, "HELLO WORLD");
while (!RadioTxPacketComplete());
@endcode
@return RIE_BOOL RIE_TRUE if packet has finished transmitting, else RIE_FALSE
**/
RIE_BOOL RadioTxPacketComplete (void)
{
return bPacketTx;
}
/**
@fn RIE_Responses RadioTxSetPA(RIE_PATypes PAType,RIE_PAPowerLevel Power)
@brief Set PA Type and the Transmit Power Level for Radio Transmission.
@param PAType :{DifferentialPA, SingleEndedPA} Select Single Ended or Differential PA Type
@param Power :{PowerLevel0 ,PowerLevel1 ,PowerLevel2 ,PowerLevel3,
PowerLevel4 ,PowerLevel5 ,PowerLevel6 ,PowerLevel7,
PowerLevel8 ,PowerLevel9 ,PowerLevel10,PowerLevel11,
PowerLevel12,PowerLevel13,PowerLevel14,PowerLevel15}
@pre RadioInit() must be called before this function is called.
@code
Response = RadioTxSetPA(SingleEndedPA,PowerLevel8);
@endcode
@note Differential PA is enabled by default.
@note Max TX Power is used by default.
@return RIE_Responses Error code
**/
RIE_Responses RadioTxSetPA(RIE_PATypes PAType,RIE_PAPowerLevel Power)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucNewRegVal = 0x0;
unsigned long pa_level_mcr,pa_ramp, codes_per_bit,min_codes_per_bit;
switch (PAType)
{
case DifferentialPA:
ucNewRegVal |= radio_cfg_8_pa_single_diff_sel_differential;
break;
case SingleEndedPA:
ucNewRegVal |= radio_cfg_8_pa_single_diff_sel_single_ended;
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
if(Response == RIE_Success)
{
switch (Power)
{
case PowerLevel0 :
case PowerLevel1 :
case PowerLevel2 :
case PowerLevel3 :
case PowerLevel4 :
case PowerLevel5 :
case PowerLevel6 :
case PowerLevel7 :
case PowerLevel8 :
case PowerLevel9 :
case PowerLevel10:
case PowerLevel11:
case PowerLevel12:
case PowerLevel13:
case PowerLevel14:
case PowerLevel15:
ucNewRegVal |= ((RIE_U8)Power << radio_cfg_8_pa_power_offset);
// Calculate the minimum allowable codes per bit
pa_level_mcr = (((RIE_U8)Power)* 4) + 0x3;
min_codes_per_bit = (pa_level_mcr * 2500)/(DataRate/100);
pa_ramp = 0x1;
codes_per_bit = 256;
while (codes_per_bit > min_codes_per_bit)
{
pa_ramp++;
codes_per_bit = 512 >> pa_ramp;
if (pa_ramp >= 7)
break; // This is the maximum
}
ucNewRegVal |= ((RIE_U8)pa_ramp << radio_cfg_8_pa_ramp_offset);
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
}
if(Response == RIE_Success)
{
if (ucNewRegVal != RadioConfiguration.radio_cfg_8_r )
{
bRadioConfigurationChanged = RIE_TRUE;
RadioConfiguration.radio_cfg_8_r = ucNewRegVal;
}
}
return Response;
}
/**
@fn RIE_Responses RadioTxCarrier(void)
@brief Transmit a carrier tone
using the current radio configuration.
@pre RadioInit() must be called before this function is called.
@code
Response = RadioTxCarrier();
@endcode
@note Terminate this mode by calling RadioTerminateRadioOp();
@return RIE_Responses Error code
**/
RIE_Responses RadioTxCarrier (void)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ParamTX = PARAM_TX_CARRIER_FOREVER;
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
bTestModeEnabled = RIE_TRUE;
if (Response == RIE_Success)
Response = RadioToOnMode();
// Mode needs to be set, before entry to PHY_TX
if (Response == RIE_Success)
Response = RadioMMapWrite(PR_var_tx_mode_ADR,sizeof(ParamTX),&ParamTX);
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_TX);
return Response;
}
/**
@fn RIE_Responses RadioTxPreamble(void)
@brief Transmit a pre-amble (alternating ones and zeros)
using the current radio configuration.
@pre RadioInit() must be called before this function is called.
@code
Response = RadioTxPreamble();
@endcode
@note Terminate this mode by calling RadioTerminateRadioOp();
@return RIE_Responses Error code
**/
RIE_Responses RadioTxPreamble (void)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ParamTX = PARAM_TX_PREAMBLE_FOREVER;
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
bTestModeEnabled = RIE_TRUE;
// Mode needs to be set, before entry to PHY_TX
if (Response == RIE_Success)
Response = RadioMMapWrite(PR_var_tx_mode_ADR,sizeof(ParamTX),&ParamTX);
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_TX);
return Response;
}
/**
@fn RIE_Responses RadioRxPacketFixedLen(RIE_U8 Len)
@brief Enter receive mode and wait for a packet to be received.
Radio will stay in Receive Mode until
1) A packet is received.
2) User manually exits Receive Mode with a call to RadioTerminateRadioOp()
@param Len :{1-240} Fixed Length of packet to be received.
@pre RadioInit() must be called before this function is called.
@return RIE_Responses Error code
**/
RIE_Responses RadioRxPacketFixedLen(RIE_U8 Len)
{
RIE_Responses Response = RIE_Success;
bPacketRx = RIE_FALSE;
if (Len > PACKETRAM_LEN)
Response = RIE_InvalidParamter;
if (Response == RIE_Success)
{
RadioConfiguration.packet_length_max_r = Len;
RadioConfiguration.packet_length_control_r |= packet_length_control_packet_len_fixed;
}
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_RX);
return Response;
}
/**
@fn RIE_Responses RadioRxPacketVariableLen(void)
@brief Enter receive mode and wait for a packet to be received.
Radio will stay in Receive Mode until
1) A packet is received.
2) User manually exits Receive Mode with a call to RadioTerminateRadioOp()
@pre RadioInit() must be called before this function is called.
@return RIE_Responses Error code
**/
RIE_Responses RadioRxPacketVariableLen(void)
{
RIE_Responses Response = RIE_Success;
bPacketRx = RIE_FALSE;
if (Response == RIE_Success)
{
RadioConfiguration.packet_length_max_r = PACKETRAM_LEN;
RadioConfiguration.packet_length_control_r &= ~packet_length_control_packet_len_fixed;
}
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_RX);
return Response;
}
/**
@fn RIE_BOOL RadioRxPacketAvailable(void)
@brief Checks if a packet has been received.
@pre RadioInit() must be called before this function is called.
@pre RadioRxPacketFixedLen() or equivalent should be called first.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioRxPacketFixedLen(12);
if (RIE_Response == RIE_Success)
{
while (!RadioRxPacketAvailable());
}
if (RIE_Response == RIE_Success)
{
unsigned char Buffer[0x20];
RIE_U8 PktLen;
RIE_S8 RSSI;
RIE_Response = RadioRxPacketRead(sizeof(Buffer),&PktLen,Buffer,&RSSI);
}
@endcode
@return RIE_BOOL RIE_TRUE if packet received, else RIE_FALSE
**/
RIE_BOOL RadioRxPacketAvailable(void)
{
return bPacketRx;
}
/**
@fn RIE_Responses RadioRxPacketRead(RIE_U8 BufferLen,RIE_U8 *pPktLen,RIE_U8 *pData,RIE_S8 *pRSSIdBm)
@brief Read the packet that was received by the radio.
@param BufferLen :{1-240} Size of passed in buffer
@param pPktLen :{1-240} Storage for size of actual received packet
@param pData :{} Received Packet will be stored here.
@param pRSSIdBm :{} RSSI of received packet in dBm.
@pre RadioInit() must be called before this function is called.
@pre RadioRxPacketFixedLen() or equivalent should be called first.
@code
if (RIE_Response == RIE_Success)
RIE_Response = RadioRxPacketFixedLen(12);
if (RIE_Response == RIE_Success)
{
while (!RadioRxPacketAvailable());
}
if (RIE_Response == RIE_Success)
{
unsigned char Buffer[0x20];
RIE_U8 PktLen;
RIE_S8 RSSI;
RIE_Response = RadioRxPacketRead(sizeof(Buffer),&PktLen,Buffer,&RSSI);
}
@endcode
@note Check for the presence of a packet by calling RadioRxPacketAvailable();
@return RIE_Responses Error code
**/
RIE_Responses RadioRxPacketRead(RIE_U8 BufferLen,RIE_U8 *pPktLen,RIE_U8 *pData,RIE_S8 *pRSSIdBm)
{
RIE_Responses Response = RIE_Success;
if (RadioRxPacketAvailable())
{
RIE_U8 RdLen;
if(RadioConfiguration.packet_length_control_r & packet_length_control_packet_len_fixed)
{
if (pPktLen)
*pPktLen = RadioConfiguration.packet_length_max_r;
RdLen = RadioConfiguration.packet_length_max_r;
if (RdLen > BufferLen)
RdLen = BufferLen;
if (Response == RIE_Success)
Response = RadioMMapRead(PACKETRAM_START,RdLen, pData);
}
else
{
if (Response == RIE_Success)
Response = RadioMMapRead(PACKETRAM_START,0x1, &RdLen);
RdLen -= 0x1;
if (pPktLen)
*pPktLen = RdLen;
if (RdLen > BufferLen)
RdLen = BufferLen;
if (Response == RIE_Success)
Response = RadioMMapRead(PACKETRAM_START+0x1,RdLen, pData);
}
if (pRSSIdBm)
{
if (Response == RIE_Success)
Response = RadioMMapRead(MCR_rssi_readback_Adr,0x1, (RIE_U8 *)pRSSIdBm);
*pRSSIdBm -= 107; // Convert to dBm
}
}
else
{
if (pPktLen)
*pPktLen = 0x0;
}
return Response;
}
/**
@fn RIE_Responses RadioRxBERTestMode(void)
@brief Enter receiver Bit Error Rate (BER) test mode where the
clock and data appear on GPIO pins.
Clock on P0.6 and Data on P2.6
@pre RadioInit() must be called before this function is called.
@code
Response = RadioRxBERTestMode();
@endcode
@note Terminate this mode by calling RadioTerminateRadioOp();
@return RIE_Responses Error code
**/
RIE_Responses RadioRxBERTestMode(void)
{
RIE_Responses Response = RIE_Success;
RIE_U8 Data;
// Enables internal radio signals on external pins
// but overrides some of the standard GPIO muxed
// functionality (UART?)
pADI_MISC->RFTST = 0x7E1;
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
bTestModeEnabled = RIE_TRUE;
// Enable the RX signals on GPIO pins
Data = gpio_configure_sport_mode_0;
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_gpio_configure_Adr, 0x1, (RIE_U8 *)&Data);
// disable ext_uc_clk on GP5
Data = 0;
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_ext_uc_clk_divide_Adr,
0x1,
(RIE_U8 *)&Data);
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_PHY_RX);
return Response;
}
/**
@internal Hide from Doxegen
@fn RIE_Responses RadioCommitRadioConfig(void)
@brief Configures the radio if any changes were made
since the last time.
@return RIE_Responses Error code
**/
static RIE_Responses RadioCommitRadioConfig(void)
{
RIE_Responses Response = RIE_Success;
if(bTestModeEnabled)
{
RIE_U8 Data;
Data = gpio_configure_default;
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_gpio_configure_Adr, 0x1, (RIE_U8 *)&Data);
Data = 4;
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_ext_uc_clk_divide_Adr,
0x1,
(RIE_U8 *)&Data);
Data = PARAM_TX_NORMAL_PACKET;
if (Response == RIE_Success)
Response = RadioMMapWrite(PR_var_tx_mode_ADR,sizeof(Data),&Data);
bTestModeEnabled = RIE_FALSE;
}
if (bRadioConfigurationChanged)
{
Response = RadioConfigure();
if(Response == RIE_Success)
bRadioConfigurationChanged = RIE_FALSE;
}
return Response;
}
/**
@fn RIE_Responses RadioReadState(RadioState *pState)
@brief Read the current state
@param pState Pointer to return storage of state
@return RIE_Responses Error code
**/
static RIE_Responses RadioReadState(RadioState *pState)
{
RIE_Responses Response = RIE_Success;
RIE_U8 StatusByte;
NVIC_DisableIRQ(UHFTRX_IRQn);
RADIO_CSN_ASSERT;
if (Response == RIE_Success)
Response = RadioSPIXferByte(SPI_NOP,NULL);
if (Response == RIE_Success)
Response = RadioSPIXferByte(SPI_NOP,&StatusByte);
RADIO_CSN_DEASSERT;
NVIC_EnableIRQ (UHFTRX_IRQn);
if ((Response == RIE_Success) && pState)
*pState = (RadioState)(StatusByte & STATUS_BYTE_FW_STATE);
return Response;
}
/**
@fn RIE_Responses RadioWaitOnState(RadioState FinalState)
@brief Wait for Final State to be reached
@param FinalState State to wait on
@return RIE_Responses Error code
**/
static RIE_Responses RadioWaitOnState(RadioState FinalState)
{
RIE_Responses Response = RIE_Success;
RadioState CurrState;
do
{
Response = RadioReadState(&CurrState);
}
while((Response == RIE_Success) && (CurrState != FinalState));
return Response;
}
/**
@fn RIE_Responses RadioWaitOnCmdLdr(void)
@brief Wait for Final State to be reached
@return RIE_Responses Error code
**/
static RIE_Responses RadioWaitOnCmdLdr(void)
{
RIE_Responses Response = RIE_Success;
do
{
RIE_U8 StatusByte;
NVIC_DisableIRQ(UHFTRX_IRQn);
RADIO_CSN_ASSERT;
if (Response == RIE_Success)
Response = RadioSPIXferByte(SPI_NOP,NULL);
if (Response == RIE_Success)
Response = RadioSPIXferByte(SPI_NOP,&StatusByte);
RADIO_CSN_DEASSERT;
NVIC_EnableIRQ (UHFTRX_IRQn);
if ((Response == RIE_Success))
if(StatusByte & STATUS_BYTE_CMD_READY)
break;
}
while((Response == RIE_Success));
return Response;
}
/**
@internal Hide from Doxegen
@fn RIE_Responses RadioToOnMode(void)
@brief Transition to On Mode
Handle all possible states that the radio could be in
and brings it back to PHY_ON state
@param None
@return RIE_Responses Error code
**/
static RIE_Responses RadioToOnMode(void)
{
RIE_Responses Response = RIE_Success;
RadioState FwState;
if (Response == RIE_Success)
Response = RadioReadState(&FwState);
while ((FwState != FW_ON) && (Response == RIE_Success))
{
switch (FwState)
{
case FW_BUSY:
break;
case FW_TX:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_ON);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_ON);
break;
case FW_RX:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_ON);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_ON);
break;
default:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_ON);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_ON);
break;
}
if (Response == RIE_Success)
Response = RadioReadState(&FwState);
}
return Response;
}
/**
@internal Hide from Doxegen
@fn RIE_Responses RadioToOffMode(void)
@brief Transition to Off Mode
Handle all possible states that the radio could be in
and bring it back to PHY_OFF state.
@param None
@return RIE_Responses Error code
**/
static RIE_Responses RadioToOffMode(void)
{
RIE_Responses Response = RIE_Success;
RadioState FwState;
if (Response == RIE_Success)
Response = RadioReadState(&FwState);
while ((FwState != FW_OFF) && (Response == RIE_Success))
{
switch (FwState)
{
case FW_BUSY:
break;
case FW_TX:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_ON);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_ON);
break;
case FW_RX:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_ON);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_ON);
break;
default:
if(Response == RIE_Success)
Response = RadioSendCommandNoWait(CMD_PHY_OFF);
if (Response == RIE_Success)
Response = RadioWaitOnState (FW_OFF);
break;
}
if (Response == RIE_Success)
Response = RadioReadState(&FwState);
}
return Response;
}
/**
@internal Hide from Doxegen
@fn RIE_Responses RadioSyncComms (void)
@brief Sync comms with the radio
@param None
@return RIE_Responses Error code
**/
static RIE_Responses RadioSyncComms (void)
{
RIE_Responses Response = RIE_Success;
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_SYNC);
if (Response == RIE_Success)
Response = RadioWaitOnCmdLdr();
return Response;
}
/**
@fn RIE_Responses RadioWaitForPowerUp(void)
@brief Wake Up the Part
Assert SPI chip select which will wake up the radio if asleep
Wait for MISO line to go high indicating SPI comms now possible
@return RIE_Responses Error code
**/
static RIE_Responses RadioWaitForPowerUp(void)
{
RIE_Responses Response = RIE_Success;
int i = 0x0;
RADIO_CSN_ASSERT;
while (!RADIO_MISO_IN && (i < 1000))
i++;
if (1000 == i)// Timed out waiting for MISO high?
Response = RIE_RadioSPICommsFail;
RADIO_CSN_DEASSERT;
return Response;
}
/**
\internal Hide from Doxegen
\fn void Ext_Int8_Handler(void)
\brief Radio Interrupt Handler
**/
extern void aducrf101_rx_packet_hook(void);
void Ext_Int8_Handler (void)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucInt0;
RIE_U8 ucInt1;
if (Response == RIE_Success)
Response = RadioMMapRead(MCR_interrupt_source_0_Adr,0x1, &ucInt0);
if (Response == RIE_Success)
Response = RadioMMapRead(MCR_interrupt_source_1_Adr,0x1,&ucInt1);
if (ucInt0 & interrupt_mask_0_interrupt_tx_eof)
bPacketTx = RIE_TRUE;
if (ucInt0 & interrupt_mask_0_interrupt_crc_correct) {
bPacketRx = RIE_TRUE;
aducrf101_rx_packet_hook();
}
// Clear all the interrupts that we have just handleed
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_interrupt_source_0_Adr,0x1, &ucInt0);
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_interrupt_source_1_Adr,0x1,&ucInt1);
// Clear the interrupt
pADI_INTERRUPT->EICLR = EICLR_IRQ8;
}
/**
\internal Hide from Doxegen
\fn void RadioSPIXferByte(RIE_U8 ucByte,RIE_U8 *pData)
\brief Transfer a byte via SPI to the radio and optionally return
received byte.
Chip Select is manually controlled elsewhere.
\param ucByte Command or data byte to be transferred.
\param pData NULL, or storage for response
\return RIE_Responses Error code
**/
static RIE_Responses RadioSPIXferByte(RIE_U8 ucByte,RIE_U8 *pData)
{
RIE_Responses Response = RIE_Success;
SEND_SPI(ucByte); // Send byte
WAIT_SPI_RX; // wait for data received status bit
if(pData)
*pData = READ_SPI;
else
(void)READ_SPI;
return Response;
}
/**
\internal Hide from Doxegen
\fn RIE_Responses RadioSendCommandBytes(RIE_U8 *pCmdBytes,RIE_U8 NumBytes)
\brief Send a complete command to the radio.
It is neccessary to disable the radio interrupt when doing this
as a command in progress must finish before a radio interrupt
can be handled.
\param pCmdBytes Pointer to a number of bytes to be transferred.
\param NumBytes Number of bytes to transfer
\return RIE_Responses Error code
**/
static RIE_Responses RadioSendCommandBytes(RIE_U8 *pCmdBytes,RIE_U8 NumBytes)
{
RIE_Responses Response = RIE_Success;
NVIC_DisableIRQ(UHFTRX_IRQn);
RADIO_CSN_ASSERT;
while ((NumBytes--) && (Response == RIE_Success))
Response = RadioSPIXferByte(*(pCmdBytes++),NULL); // Send Command
RADIO_CSN_DEASSERT; // De-assert SPI chip select
NVIC_EnableIRQ (UHFTRX_IRQn);
return Response;
}
/**
\internal Hide from Doxegen
\fn RIE_Responses RadioSendCommandNoWait (Radio_CmdCodes CmdCode )
\brief Send a single byte command to the radio.
\param CmdCode Command code to be sent
\return RIE_Responses Error code
**/
static RIE_Responses RadioSendCommandNoWait (Radio_CmdCodes CmdCode )
{
RIE_U8 Command = (RIE_U8)CmdCode;
return RadioSendCommandBytes(&Command,0x1);
}
/**
\internal Hide from Doxegen
\fn RIE_Responses RadioSendCommandWait (Radio_CmdCodes CmdCode )
\brief Send a single byte command to the radio.
\param CmdCode Command code to be sent
\return RIE_Responses Error code
**/
static RIE_Responses RadioSendCommandWait (Radio_CmdCodes CmdCode )
{
RIE_Responses Response = RIE_Success;
RIE_U8 Command = (RIE_U8)CmdCode;
if (Response == RIE_Success)
Response = RadioWaitOnCmdLdr();
if (Response == RIE_Success)
Response = RadioSendCommandBytes(&Command,0x1);
return Response;
}
/**
\fn RIE_Responses RadioMMapRead(RIE_U32 ulAdr, RIE_U32 ulLen, RIE_U8 *pData)
\brief Read bytes from specified memory map address
\param ulAdr Address to read at.
\param ulLen Length of data to read.
\param pData Pointer to location to stored read data.
\return RIE_Responses Error code
**/
static RIE_Responses RadioMMapRead(RIE_U32 ulAdr, RIE_U32 ulLen, RIE_U8 *pData)
{
RIE_Responses Response = RIE_Success;
NVIC_DisableIRQ(UHFTRX_IRQn);
RADIO_CSN_ASSERT;
if(Response == RIE_Success) // Send first byte (SPI_MEMR_RD + Bytes)
Response = RadioSPIXferByte(SPI_MEM_RD | ((ulAdr & 0x700) >> 8),NULL);
if(Response == RIE_Success)// Send Second byte remainder of address
Response = RadioSPIXferByte((RIE_U8)(ulAdr & 0xFF),NULL);
if(Response == RIE_Success)
Response = RadioSPIXferByte((RIE_U8)SPI_NOP,NULL);
while(ulLen-- && (Response == RIE_Success))
Response = RadioSPIXferByte(SPI_NOP,pData++);
RADIO_CSN_DEASSERT;
NVIC_EnableIRQ (UHFTRX_IRQn);
return Response;
}
/**
\fn RIE_Responses RadioMMapWrite(RIE_U32 ulAdr, RIE_U32 ulLen, RIE_U8 *pData)
\brief Read bytes from specified memory map address
\param ulAdr Address to read at.
\param ulLen Length of data to read.
\param pData Pointer to location of data to write.
\return RIE_Responses Error code
**/
static RIE_Responses RadioMMapWrite(RIE_U32 ulAdr,RIE_U32 ulLen,RIE_U8 * pData)
{
RIE_Responses Response = RIE_Success;
NVIC_DisableIRQ(UHFTRX_IRQn);
RADIO_CSN_ASSERT;
if(Response == RIE_Success) // Send first byte (SPI_MEMR_WR + Bytes)
Response = RadioSPIXferByte(SPI_MEM_WR | ((ulAdr & 0x700) >> 8),NULL);
if(Response == RIE_Success) // Send Second byte remainder of addrress
Response = RadioSPIXferByte((RIE_U8)(ulAdr & 0xFF),NULL);
while(ulLen-- && (Response == RIE_Success))
Response = RadioSPIXferByte(*(pData++),NULL);
RADIO_CSN_DEASSERT;
NVIC_EnableIRQ (UHFTRX_IRQn);
return Response;
}
/**
\internal Hide from Doxegen
\fn void SetRadioConfiguration(void)
\brief Create a default radio configuration that all base configurations
are derived from.
\return RIE_Responses Error code
**/
static RIE_Responses SetRadioConfiguration(RIE_BaseConfigs BaseConfig)
{
RIE_Responses Response = RIE_Success;
bRadioConfigurationChanged = RIE_TRUE;
switch (BaseConfig)
{
case DR_1_0kbps_Dev10_0kHz:
memcpy((void *)&RadioConfiguration,
(void *)DR_1_0kbps_Dev10_0kHz_Configuration,
sizeof(TyRadioConfiguration));
DataRate = 1000;
break;
case DR_38_4kbps_Dev20kHz:
memcpy((void *)&RadioConfiguration,
(void *)DR_38_4kbps_Dev20kHz_Configuration,
sizeof(TyRadioConfiguration));
DataRate = 38400;
break;
case DR_300_0kbps_Dev75_0kHz:
memcpy((void *)&RadioConfiguration,
(void *)DR_300_0kbps_Dev75_0kHz_Configuration,
sizeof(TyRadioConfiguration));
DataRate = 300000;
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
return Response;
}
/**
@internal Hide from Doxegen
@fn RIE_Responses RadioConfigure (void)
@brief Configure the Radio as per the current configuration
@return RIE_Responses Error code
**/
RIE_Responses RadioConfigure (void)
{
RIE_Responses Response = RIE_Success;
if(Response == RIE_Success)
Response = RadioToOffMode();
if(Response == RIE_Success) // Write the configuration to the radio memory
Response = RadioMMapWrite(BBRAM_START,
sizeof(TyRadioConfiguration),
(RIE_U8 *)&RadioConfiguration);
if(Response == RIE_Success) // Apply that configuration to the radio
Response = RadioSendCommandWait(CMD_CONFIG_DEV);
if(Response == RIE_Success)
Response = RadioToOnMode();
return Response;
}
/**
@fn RIE_Responses RadioRadioGetRSSI (RIE_S8 *pRSSIdBm)
@brief Return a Received Signal Strength Indicator value
@param pRSSIdBm :{} detected RSSI in dBm.
@pre RadioInit() must be called before this function is called.
@code
RIE_S8 RSSIdBm;
if (RIE_Response == RIE_Success)
RIE_Response = RadioRadioGetRSSI(&RSSIdBm);
@endcode
@return RIE_Responses Error code
**/
RIE_Responses RadioRadioGetRSSI (RIE_S8 *pRSSIdBm)
{
RIE_Responses Response = RIE_Success;
if(Response == RIE_Success)
Response = RadioCommitRadioConfig();
if (Response == RIE_Success)
Response = RadioToOnMode();
if (Response == RIE_Success)
Response = RadioSendCommandWait(CMD_GET_RSSI);
if (Response == RIE_Success)
Response = RadioSyncComms(); //
if (pRSSIdBm)
{
if (Response == RIE_Success)
Response = RadioMMapRead(MCR_rssi_readback_Adr,0x1, (RIE_U8 *)pRSSIdBm);
*pRSSIdBm -= 107; // Convert to dBm
}
return Response;
}
/**
@fn RIE_Responses RadioTxSetPower(RIE_PAPowerLevel Power)
@brief Set the Transmit Power Level for Radio Transmission.
@param Power :{PowerLevel0 ,PowerLevel1 ,PowerLevel2 ,PowerLevel3,
PowerLevel4 ,PowerLevel5 ,PowerLevel6 ,PowerLevel7,
PowerLevel8 ,PowerLevel9 ,PowerLevel10,PowerLevel11,
PowerLevel12,PowerLevel13,PowerLevel14,PowerLevel15}
@pre RadioInit() must be called before this function is called.
@code
Response = RadioTxSetPower(PowerLevel8);
@endcode
@note Max TX Power is used by default.
@return RIE_Responses Error code
*/
RIE_Responses RadioTxSetPower (RIE_PAPowerLevel Power)
{
RIE_Responses Response = RIE_Success;
RIE_U8 ucNewRegVal = RadioConfiguration.radio_cfg_8_r;
unsigned long pa_level_mcr,pa_ramp, codes_per_bit,min_codes_per_bit;
if (RadioConfiguration.radio_cfg_8_r & radio_cfg_8_pa_single_diff_sel_differential)
ucNewRegVal = radio_cfg_8_pa_single_diff_sel_differential;
else
ucNewRegVal = radio_cfg_8_pa_single_diff_sel_single_ended;
if(Response == RIE_Success)
{
switch (Power)
{
case PowerLevel0 :
case PowerLevel1 :
case PowerLevel2 :
case PowerLevel3 :
case PowerLevel4 :
case PowerLevel5 :
case PowerLevel6 :
case PowerLevel7 :
case PowerLevel8 :
case PowerLevel9 :
case PowerLevel10:
case PowerLevel11:
case PowerLevel12:
case PowerLevel13:
case PowerLevel14:
case PowerLevel15:
ucNewRegVal |= ((RIE_U8)Power << radio_cfg_8_pa_power_offset);
// Calculate the minimum allowable codes per bit
pa_level_mcr = (((RIE_U8)Power)* 4) + 0x3;
min_codes_per_bit = (pa_level_mcr * 2500)/(DataRate/100);
pa_ramp = 0x1;
codes_per_bit = 256;
while (codes_per_bit > min_codes_per_bit)
{
pa_ramp++;
codes_per_bit = 512 >> pa_ramp;
if (pa_ramp >= 7)
break; // This is the maximum
}
ucNewRegVal |= ((RIE_U8)pa_ramp << radio_cfg_8_pa_ramp_offset);
break;
default:
Response = RIE_UnsupportedRadioConfig;
break;
}
}
if(Response == RIE_Success)
{
if (ucNewRegVal != RadioConfiguration.radio_cfg_8_r )
{
// Write directly to the MCR in this case and avoid a reconfigure
if (Response == RIE_Success)
Response = RadioMMapWrite(MCR_pa_level_mcr_Adr, 0x1, (RIE_U8 *)&ucNewRegVal);
RadioConfiguration.radio_cfg_8_r = ucNewRegVal;
}
}
return Response;
}