nes-proj/drivers/platform/zoul/dev/grove-gyro.c

648 lines
21 KiB
C

/*
* Copyright (c) 2016, Zolertia <http://www.zolertia.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
/*---------------------------------------------------------------------------*/
/**
* \addtogroup zoul-grove-gyro-sensor
* @{
*
* \file
* Grove's 3-axis gyroscope driver
* \author
* Antonio Lignan <alinan@zolertia.com>
*/
/*---------------------------------------------------------------------------*/
#include <stdio.h>
#include "contiki.h"
#include "dev/i2c.h"
#include "dev/grove-gyro.h"
#include "lib/sensors.h"
#include "dev/watchdog.h"
/*---------------------------------------------------------------------------*/
#define DEBUG 0
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
#define GROVE_GYRO_INT_PORT_BASE GPIO_PORT_TO_BASE(I2C_INT_PORT)
#define GROVE_GYRO_INT_PIN_MASK GPIO_PIN_MASK(I2C_INT_PIN)
/*---------------------------------------------------------------------------*/
static uint8_t enabled;
static uint8_t power_mgmt;
static uint8_t int_en;
/*---------------------------------------------------------------------------*/
grove_gyro_values_t gyro_values;
/*---------------------------------------------------------------------------*/
void (*grove_gyro_int_callback)(uint8_t value);
/*---------------------------------------------------------------------------*/
static uint16_t
grove_gyro_read_reg(uint8_t reg, uint8_t *buf, uint8_t num)
{
if((buf == NULL) || (num <= 0)) {
return GROVE_GYRO_ERROR;
}
i2c_master_enable();
if(i2c_single_send(GROVE_GYRO_ADDR, reg) == I2C_MASTER_ERR_NONE) {
if(i2c_burst_receive(GROVE_GYRO_ADDR, buf, num) == I2C_MASTER_ERR_NONE) {
return GROVE_GYRO_SUCCESS;
}
}
PRINTF("Gyro: failed to read from sensor\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_write_reg(uint8_t *buf, uint8_t num)
{
if((buf == NULL) || (num <= 0)) {
PRINTF("Gyro: invalid write values\n");
return GROVE_GYRO_ERROR;
}
i2c_master_enable();
if(i2c_burst_send(GROVE_GYRO_ADDR, buf, num) == I2C_MASTER_ERR_NONE) {
return GROVE_GYRO_SUCCESS;
}
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_sampdiv(uint8_t value)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_SMPLRT_DIV;
buf[1] = value;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: new sampdiv 0x%02X\n", value);
return GROVE_GYRO_SUCCESS;
}
PRINTF("Gyro: failed to set sampdiv\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static uint8_t
grove_gyro_clear_interrupt(void)
{
uint8_t aux = 0;
/* Clear interrupt */
grove_gyro_read_reg(GROVE_GYRO_INT_STATUS, &aux, 1);
if(aux & GROVE_GYRO_INT_STATUS_DATA_RDY_MASK) {
return GROVE_GYRO_INT_STATUS_DATA_RDY_MASK;
}
return 0;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_interrupt(uint8_t value)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_INT_CFG;
buf[1] = value;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS){
PRINTF("Gyro: interrupt cfg 0x%02X\n", value);
return GROVE_GYRO_SUCCESS;
}
PRINTF("Gyro: failed to change interrupt config\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_reset(void)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_PWR_MGMT;
/* Read the power management status as well to force sync */
if(grove_gyro_read_reg(GROVE_GYRO_PWR_MGMT, &power_mgmt, 1) ==
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: current power mgmt 0x%02X\n", power_mgmt);
buf[1] = power_mgmt + GROVE_GYRO_PWR_MGMT_RESET;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: restarted with 0x%02X, now with default values\n", buf[1]);
return GROVE_GYRO_SUCCESS;
}
}
PRINTF("Gyro: failed to restart\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_osc(uint8_t value)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_PWR_MGMT;
/* Read the power management status as well to force sync */
if(grove_gyro_read_reg(GROVE_GYRO_PWR_MGMT, &power_mgmt, 1) ==
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: current power mgmt 0x%02X\n", power_mgmt);
power_mgmt &= ~GROVE_GYRO_PWR_MGMT_CLK_SEL_MASK;
buf[1] = power_mgmt + value;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: new clock source 0x%02X\n", buf[1]);
return GROVE_GYRO_SUCCESS;
}
}
PRINTF("Gyro: failed to change the clock source\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_power_mgmt(uint8_t value, uint8_t type)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_PWR_MGMT;
if((type != GROVE_GYRO_POWER_ON) && (type != GROVE_GYRO_POWER_OFF)) {
PRINTF("Gyro: invalid power command type\n");
return GROVE_GYRO_ERROR;
}
/* Read the power management status as well to force sync */
if(grove_gyro_read_reg(GROVE_GYRO_PWR_MGMT, &power_mgmt, 1) ==
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: current power mgmt 0x%02X\n", power_mgmt);
if(type == GROVE_GYRO_POWER_ON) {
power_mgmt &= ~value;
} else {
power_mgmt |= value;
}
buf[1] = power_mgmt;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: new power management register value 0x%02X\n", power_mgmt);
/* Power-up delay */
if(type == GROVE_GYRO_POWER_ON) {
clock_delay_usec(25000);
}
return GROVE_GYRO_SUCCESS;
}
}
PRINTF("Gyro: power management fail\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_dlpf(uint8_t value)
{
uint8_t buf[2];
buf[0] = GROVE_GYRO_DLPF_FS;
buf[1] = GROVE_GYRO_DLPF_FS_SEL + value;
if(grove_gyro_write_reg(buf, 2) == GROVE_GYRO_SUCCESS) {
/* Double-check */
if(grove_gyro_read_reg(GROVE_GYRO_DLPF_FS, &buf[0], 1) ==
GROVE_GYRO_SUCCESS) {
if(buf[0] == buf[1]) {
PRINTF("Gyro: updated lp/sr 0x%02X\n", buf[0]);
return GROVE_GYRO_SUCCESS;
} else {
PRINTF("Gyro: DLPF register value mismatch\n");
return GROVE_GYRO_ERROR;
}
}
}
PRINTF("Gyro: failed to change the lp/sr\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static uint16_t
grove_gyro_convert_to_value(uint16_t val)
{
uint32_t aux;
/* Convert from 2C's to 10's, as we care about º/s negative quantifier doesn't
* matter, so we ommit flaging the sign
*/
if(val & 0x8000) {
val = (~val + 1);
}
/* ITG-3200 datasheet: sensitivity 14.375 LSB/(º/s) to get º/s */
aux = val * 6956;
aux /= 1000;
return (uint16_t)aux;
}
/*---------------------------------------------------------------------------*/
static void
grove_gyro_convert(uint8_t *buf, uint8_t type)
{
uint16_t aux;
if(type & GROVE_GYRO_X) {
aux = (buf[0] << 8) + buf[1];
PRINTF("Gyro: X_axis (raw) 0x%02X\n", aux);
gyro_values.x = grove_gyro_convert_to_value(aux);
}
if(type & GROVE_GYRO_Y) {
aux = (buf[2] << 8) + buf[3];
PRINTF("Gyro: Y_axis (raw) 0x%02X\n", aux);
gyro_values.y = grove_gyro_convert_to_value(aux);
}
if(type & GROVE_GYRO_Z) {
aux = (buf[4] << 8) + buf[5];
PRINTF("Gyro: Z_axis (raw) 0x%02X\n", aux);
gyro_values.z = grove_gyro_convert_to_value(aux);
}
if(type == GROVE_GYRO_TEMP) {
aux = (buf[0] << 8) + buf[1];
PRINTF("Gyro: Temp (raw) 0x%02X\n", aux);
/* ITG-3200 datasheet: offset -13200, sensitivity 280 LSB/ºC */
aux = (aux + 13200) / 28;
aux += 350;
gyro_values.temp = (int16_t)aux;
}
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_read(int type)
{
uint8_t reg;
uint8_t len;
uint8_t buf_ptr;
uint8_t buf[GROVE_GYRO_MAX_DATA];
len = (type == GROVE_GYRO_XYZ) ? GROVE_GYRO_MAX_DATA : 2;
switch(type) {
case GROVE_GYRO_X:
case GROVE_GYRO_XYZ:
buf_ptr = 0;
reg = GROVE_GYRO_XOUT_H;
break;
case GROVE_GYRO_Y:
buf_ptr = 2;
reg = GROVE_GYRO_YOUT_H;
break;
case GROVE_GYRO_Z:
buf_ptr = 4;
reg = GROVE_GYRO_ZOUT_H;
break;
case GROVE_GYRO_TEMP:
buf_ptr = 0;
reg = GROVE_GYRO_TEMP_OUT_H;
break;
case GROVE_GYRO_ADDR:
buf_ptr = 0;
len = 1;
reg = GROVE_GYRO_WHO_AM_I;
break;
default:
PRINTF("Gyro: invalid value requested\n");
return GROVE_GYRO_ERROR;
}
if(grove_gyro_read_reg(reg, &buf[buf_ptr], len) == GROVE_GYRO_SUCCESS) {
if(type == GROVE_GYRO_ADDR) {
PRINTF("Gyro: I2C_addr 0x%02X\n", buf[0]);
return buf[0];
}
grove_gyro_convert(buf, type);
return GROVE_GYRO_SUCCESS;
}
PRINTF("Gyro: failed to change the lp/sr\n");
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
grove_gyro_calibrate(void)
{
uint8_t i;
uint8_t buf[GROVE_GYRO_MAX_DATA];
uint8_t power_mgmt_backup;
uint32_t x, y, z;
/* Disable interrupts */
if(int_en) {
if(grove_gyro_interrupt(GROVE_GYRO_INT_CFG_DISABLE) == GROVE_GYRO_ERROR) {
PRINTF("Gyro: failed to disable the interrupts\n");
return GROVE_GYRO_ERROR;
}
GPIO_DISABLE_INTERRUPT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
}
/* Turn on the 3-axis, save the current config */
if(grove_gyro_read_reg(GROVE_GYRO_PWR_MGMT, &power_mgmt_backup, 1) ==
GROVE_GYRO_ERROR) {
PRINTF("Gyro: failed to read power mgmt config\n");
return GROVE_GYRO_ERROR;
}
if(grove_gyro_power_mgmt(GROVE_GYRO_ALL, GROVE_GYRO_POWER_ON) ==
GROVE_GYRO_ERROR) {
PRINTF("Gyro: failed to bring sensor up\n");
return GROVE_GYRO_ERROR;
}
x = 0;
y = 0;
z = 0;
for (i = 0; i < GROVE_GYRO_CALIB_SAMPLES; i++){
clock_delay_usec(GROVE_GYRO_CALIB_TIME_US);
watchdog_periodic();
if(grove_gyro_read_reg(GROVE_GYRO_XOUT_H, buf, GROVE_GYRO_MAX_DATA) ==
GROVE_GYRO_SUCCESS) {
x += (buf[0] << 8) + buf[1];
y += (buf[2] << 8) + buf[3];
z += (buf[4] << 8) + buf[5];
}
}
gyro_values.x_offset = ABS(x)/GROVE_GYRO_CALIB_SAMPLES;
gyro_values.y_offset = ABS(y)/GROVE_GYRO_CALIB_SAMPLES;
gyro_values.z_offset = ABS(z)/GROVE_GYRO_CALIB_SAMPLES;
PRINTF("Gyro: x_offset (RAW) 0x%02X\n", gyro_values.x_offset);
PRINTF("Gyro: y_offset (RAW) 0x%02X\n", gyro_values.y_offset);
PRINTF("Gyro: z_offset (RAW) 0x%02X\n", gyro_values.z_offset);
gyro_values.x_offset = grove_gyro_convert_to_value(gyro_values.x_offset);
gyro_values.y_offset = grove_gyro_convert_to_value(gyro_values.y_offset);
gyro_values.z_offset = grove_gyro_convert_to_value(gyro_values.z_offset);
PRINTF("Gyro: x_offset (converted) %d\n", gyro_values.x_offset);
PRINTF("Gyro: y_offset (converted) %d\n", gyro_values.y_offset);
PRINTF("Gyro: z_offset (converted) %d\n", gyro_values.z_offset);
/* Cleaning up */
buf[0] = GROVE_GYRO_PWR_MGMT;
buf[1] = power_mgmt_backup;
if(grove_gyro_write_reg(&buf[0], 2) != GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: failed restoring power mgmt (0x%02X)\n", power_mgmt_backup);
return GROVE_GYRO_ERROR;
}
if(int_en) {
if(grove_gyro_interrupt(GROVE_GYRO_INT_CFG_RAW_READY_EN +
GROVE_GYRO_INT_CFG_LATCH_EN) == GROVE_GYRO_ERROR) {
PRINTF("Gyro: failed to enable the interrupt\n");
return GROVE_GYRO_ERROR;
}
GPIO_ENABLE_INTERRUPT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
}
return GROVE_GYRO_SUCCESS;
}
/*---------------------------------------------------------------------------*/
PROCESS(grove_gyro_int_process, "Grove gyroscope interrupt process handler");
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(grove_gyro_int_process, ev, data)
{
PROCESS_EXITHANDLER();
PROCESS_BEGIN();
static uint8_t axis_to_read = 0;
while(1) {
PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL);
if(grove_gyro_clear_interrupt() == GROVE_GYRO_INT_STATUS_DATA_RDY_MASK) {
axis_to_read += (power_mgmt & GROVE_GYRO_X) ? 0: GROVE_GYRO_X;
axis_to_read += (power_mgmt & GROVE_GYRO_Y) ? 0: GROVE_GYRO_Y;
axis_to_read += (power_mgmt & GROVE_GYRO_Z) ? 0: GROVE_GYRO_Z;
if(grove_gyro_read(axis_to_read) == GROVE_GYRO_SUCCESS) {
grove_gyro_int_callback(GROVE_GYRO_SUCCESS);
}
}
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
static void
grove_gyro_interrupt_handler(uint8_t port, uint8_t pin)
{
process_poll(&grove_gyro_int_process);
}
/*---------------------------------------------------------------------------*/
static int
value(int type)
{
if(!enabled) {
PRINTF("Gyro: sensor not started\n");
return GROVE_GYRO_ERROR;
}
if((type != GROVE_GYRO_X) && (type != GROVE_GYRO_Y) &&
(type != GROVE_GYRO_Z) && (type != GROVE_GYRO_XYZ) &&
(type != GROVE_GYRO_TEMP) && (type != GROVE_GYRO_ADDR)) {
PRINTF("Gyro: invalid value requested 0x%02X\n", type);
return GROVE_GYRO_ERROR;
}
if((type != GROVE_GYRO_TEMP) && (type != GROVE_GYRO_ADDR) &&
(type & power_mgmt)) {
PRINTF("Gyro: axis not enabled (0x%02X vs 0x%02X)\n", power_mgmt, type);
return GROVE_GYRO_ERROR;
}
return grove_gyro_read(type);
}
/*---------------------------------------------------------------------------*/
static int
configure(int type, int value)
{
if((type != GROVE_GYRO_ACTIVE) && (type != GROVE_GYRO_SAMPLE_RATE) &&
(type != GROVE_GYRO_SAMPLE_RATE_DIVIDER) && (type != GROVE_GYRO_POWER_ON) &&
(type != GROVE_GYRO_POWER_OFF) && (type != GROVE_GYRO_DATA_INTERRUPT) &&
(type != GROVE_GYRO_CALIBRATE_ZERO)) {
PRINTF("Gyro: option not supported\n");
return GROVE_GYRO_ERROR;
}
switch(type) {
case GROVE_GYRO_ACTIVE:
if(value) {
i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN,
I2C_SCL_FAST_BUS_SPEED);
/* Initialize the data structure values */
gyro_values.x = 0;
gyro_values.y = 0;
gyro_values.z = 0;
gyro_values.temp = 0;
gyro_values.x_offset = 0;
gyro_values.y_offset = 0;
gyro_values.z_offset = 0;
/* Make sure the sensor is on */
if(grove_gyro_power_mgmt(GROVE_GYRO_ALL, GROVE_GYRO_POWER_ON) !=
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: failed to power on the sensor\n");
return GROVE_GYRO_ERROR;
}
/* Reset and configure as default with internal oscillator, 8KHz @ 2000
* degrees/s, no divider (full scale)
*/
if(grove_gyro_reset() == GROVE_GYRO_SUCCESS) {
if(grove_gyro_osc(GROVE_GYRO_DEFAULT_OSC) == GROVE_GYRO_SUCCESS) {
if(grove_gyro_dlpf(GROVE_GYRO_DLPF_FS_CGF_8KHZ_LP256HZ) ==
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: started and configured\n");
/* Disable interrupts as default */
if(grove_gyro_interrupt(GROVE_GYRO_INT_CFG_DISABLE) ==
GROVE_GYRO_SUCCESS) {
PRINTF("Gyro: interrupts disabled\n");
/* And finally put the device in SLEEP mode, set also X, Y and Z
* in stand-by mode, whenever an axis is not used it should stay
* in this state to save power
*/
if(grove_gyro_power_mgmt(GROVE_GYRO_ALL, GROVE_GYRO_POWER_OFF) ==
GROVE_GYRO_SUCCESS) {
enabled = 1;
PRINTF("Gyro: axis and gyroscope in low-power mode now\n");
return GROVE_GYRO_SUCCESS;
}
}
}
}
}
return GROVE_GYRO_ERROR;
} else {
enabled = 0;
int_en = 0;
GPIO_DISABLE_INTERRUPT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
grove_gyro_int_callback = NULL;
if(grove_gyro_interrupt(GROVE_GYRO_INT_CFG_DISABLE) ==
GROVE_GYRO_SUCCESS) {
return grove_gyro_power_mgmt(GROVE_GYRO_ALL, GROVE_GYRO_POWER_OFF);
}
PRINTF("Gyro: hw interrupt disabled but failed to disable sensor\n");
return GROVE_GYRO_ERROR;
}
if(!enabled) {
PRINTF("Gyro: sensor not started\n");
return GROVE_GYRO_ERROR;
}
case GROVE_GYRO_DATA_INTERRUPT:
if(!value) {
/* Ensure the GPIO doesn't generate more interrupts, this may affect others
* I2C digital sensors using the bus and sharing this pin, so an user may
* comment the line below
*/
int_en = 0;
GPIO_DISABLE_INTERRUPT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
return grove_gyro_interrupt(GROVE_GYRO_INT_CFG_DISABLE);
}
/* Enable interrupt and latch the pin until cleared */
if(grove_gyro_interrupt(GROVE_GYRO_INT_CFG_RAW_READY_EN +
GROVE_GYRO_INT_CFG_LATCH_EN) == GROVE_GYRO_ERROR) {
PRINTF("Gyro: failed to enable the interrupt\n");
return GROVE_GYRO_ERROR;
}
/* Default register configuration is active high, push-pull */
GPIO_SOFTWARE_CONTROL(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
GPIO_SET_INPUT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
GPIO_DETECT_EDGE(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
GPIO_TRIGGER_SINGLE_EDGE(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
GPIO_DETECT_FALLING(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
gpio_register_callback(grove_gyro_interrupt_handler, I2C_INT_PORT,
I2C_INT_PIN);
/* Spin process until an interrupt is received */
process_start(&grove_gyro_int_process, NULL);
/* Enable interrupts */
int_en = 1;
GPIO_ENABLE_INTERRUPT(GROVE_GYRO_INT_PORT_BASE, GROVE_GYRO_INT_PIN_MASK);
ioc_set_over(I2C_INT_PORT, I2C_INT_PIN, IOC_OVERRIDE_PUE);
NVIC_EnableIRQ(I2C_INT_VECTOR);
PRINTF("Gyro: Data interrupt configured\n");
return GROVE_GYRO_SUCCESS;
case GROVE_GYRO_SAMPLE_RATE:
if((value < GROVE_GYRO_DLPF_FS_CGF_8KHZ_LP256HZ) ||
(value > GROVE_GYRO_DLPF_FS_CGF_1KHZ_LP5HZ)) {
PRINTF("Gyro: invalid sample rate/filter configuration\n");
return GROVE_GYRO_ERROR;
}
return grove_gyro_dlpf(value);
case GROVE_GYRO_SAMPLE_RATE_DIVIDER:
if((value < 0) && (value > 0xFF)) {
PRINTF("Gyro: invalid sampling rate div, it must be an 8-bit value\n");
return GROVE_GYRO_ERROR;
}
return grove_gyro_sampdiv((uint8_t)value);
case GROVE_GYRO_POWER_ON:
case GROVE_GYRO_POWER_OFF:
/* We accept mask values to enable more than one axis at the same time */
if((value < GROVE_GYRO_Z) || (value > GROVE_GYRO_ALL)) {
PRINTF("Gyro: invalid power management setting\n");
return GROVE_GYRO_ERROR;
}
return grove_gyro_power_mgmt(value, type);
case GROVE_GYRO_CALIBRATE_ZERO:
return grove_gyro_calibrate();
default:
return GROVE_GYRO_ERROR;
}
return GROVE_GYRO_ERROR;
}
/*---------------------------------------------------------------------------*/
SENSORS_SENSOR(grove_gyro, GROVE_GYRO_STRING, value, configure, NULL);
/*---------------------------------------------------------------------------*/
/** @} */