nes-proj/os/net/mac/csma/csma-output.c

558 lines
17 KiB
C

/*
* Copyright (c) 2010, Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file is part of the Contiki operating system.
*
*/
/**
* \file
* The 802.15.4 standard CSMA protocol (nonbeacon-enabled).
* Output functions.
* \author
* Adam Dunkels <adam@sics.se>
* Simon Duquennoy <simon.duquennoy@inria.fr>
*/
#include "net/mac/csma/csma.h"
#include "net/packetbuf.h"
#include "net/queuebuf.h"
#include "dev/watchdog.h"
#include "sys/ctimer.h"
#include "sys/clock.h"
#include "lib/random.h"
#include "net/netstack.h"
#include "lib/list.h"
#include "lib/memb.h"
#if CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64
#include "lib/simEnvChange.h"
#include "sys/cooja_mt.h"
#endif /* CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64 */
/* Log configuration */
#include "sys/log.h"
#define LOG_MODULE "CSMA"
#define LOG_LEVEL LOG_LEVEL_MAC
/* Constants of the IEEE 802.15.4 standard */
/* macMinBE: Initial backoff exponent. Range 0--CSMA_MAX_BE */
#ifdef CSMA_CONF_MIN_BE
#define CSMA_MIN_BE CSMA_CONF_MIN_BE
#else
#define CSMA_MIN_BE 0
#endif
/* macMaxBE: Maximum backoff exponent. Range 3--8 */
#ifdef CSMA_CONF_MAX_BE
#define CSMA_MAX_BE CSMA_CONF_MAX_BE
#else
#define CSMA_MAX_BE 4
#endif
/* macMaxCSMABackoffs: Maximum number of backoffs in case of channel busy/collision. Range 0--5 */
#ifdef CSMA_CONF_MAX_BACKOFF
#define CSMA_MAX_BACKOFF CSMA_CONF_MAX_BACKOFF
#else
#define CSMA_MAX_BACKOFF 5
#endif
/* macMaxFrameRetries: Maximum number of re-transmissions attampts. Range 0--7 */
#ifdef CSMA_CONF_MAX_FRAME_RETRIES
#define CSMA_MAX_FRAME_RETRIES CSMA_MAX_FRAME_RETRIES
#else
#define CSMA_MAX_FRAME_RETRIES 7
#endif
/* Packet metadata */
struct qbuf_metadata {
mac_callback_t sent;
void *cptr;
uint8_t max_transmissions;
};
/* Every neighbor has its own packet queue */
struct neighbor_queue {
struct neighbor_queue *next;
linkaddr_t addr;
struct ctimer transmit_timer;
uint8_t transmissions;
uint8_t collisions;
LIST_STRUCT(packet_queue);
};
/* The maximum number of co-existing neighbor queues */
#ifdef CSMA_CONF_MAX_NEIGHBOR_QUEUES
#define CSMA_MAX_NEIGHBOR_QUEUES CSMA_CONF_MAX_NEIGHBOR_QUEUES
#else
#define CSMA_MAX_NEIGHBOR_QUEUES 2
#endif /* CSMA_CONF_MAX_NEIGHBOR_QUEUES */
/* The maximum number of pending packet per neighbor */
#ifdef CSMA_CONF_MAX_PACKET_PER_NEIGHBOR
#define CSMA_MAX_PACKET_PER_NEIGHBOR CSMA_CONF_MAX_PACKET_PER_NEIGHBOR
#else
#define CSMA_MAX_PACKET_PER_NEIGHBOR MAX_QUEUED_PACKETS
#endif /* CSMA_CONF_MAX_PACKET_PER_NEIGHBOR */
#define MAX_QUEUED_PACKETS QUEUEBUF_NUM
/* Neighbor packet queue */
struct packet_queue {
struct packet_queue *next;
struct queuebuf *buf;
void *ptr;
};
MEMB(neighbor_memb, struct neighbor_queue, CSMA_MAX_NEIGHBOR_QUEUES);
MEMB(packet_memb, struct packet_queue, MAX_QUEUED_PACKETS);
MEMB(metadata_memb, struct qbuf_metadata, MAX_QUEUED_PACKETS);
LIST(neighbor_list);
static void packet_sent(void *ptr, int status, int num_transmissions);
static void transmit_from_queue(void *ptr);
/*---------------------------------------------------------------------------*/
static struct neighbor_queue *
neighbor_queue_from_addr(const linkaddr_t *addr)
{
struct neighbor_queue *n = list_head(neighbor_list);
while(n != NULL) {
if(linkaddr_cmp(&n->addr, addr)) {
return n;
}
n = list_item_next(n);
}
return NULL;
}
/*---------------------------------------------------------------------------*/
static clock_time_t
backoff_period(void)
{
/* Use the default in IEEE 802.15.4: aUnitBackoffPeriod which is
* 20 symbols i.e. 320 usec. That is, 1/3125 second. */
return MAX(CLOCK_SECOND / 3125, 1);
}
/*---------------------------------------------------------------------------*/
static int
send_one_packet(void *ptr)
{
int ret;
int last_sent_ok = 0;
packetbuf_set_addr(PACKETBUF_ADDR_SENDER, &linkaddr_node_addr);
packetbuf_set_attr(PACKETBUF_ATTR_MAC_ACK, 1);
if(NETSTACK_FRAMER.create() < 0) {
/* Failed to allocate space for headers */
LOG_ERR("failed to create packet\n");
ret = MAC_TX_ERR_FATAL;
} else {
int is_broadcast;
uint8_t dsn;
dsn = ((uint8_t *)packetbuf_hdrptr())[2] & 0xff;
NETSTACK_RADIO.prepare(packetbuf_hdrptr(), packetbuf_totlen());
is_broadcast = packetbuf_holds_broadcast();
if(NETSTACK_RADIO.receiving_packet() ||
(!is_broadcast && NETSTACK_RADIO.pending_packet())) {
/* Currently receiving a packet over air or the radio has
already received a packet that needs to be read before
sending with auto ack. */
ret = MAC_TX_COLLISION;
} else {
switch(NETSTACK_RADIO.transmit(packetbuf_totlen())) {
case RADIO_TX_OK:
if(is_broadcast) {
ret = MAC_TX_OK;
} else {
rtimer_clock_t wt;
/* Check for ack */
wt = RTIMER_NOW();
watchdog_periodic();
while(RTIMER_CLOCK_LT(RTIMER_NOW(), wt + CSMA_ACK_WAIT_TIME)) {
#if CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64
simProcessRunValue = 1;
cooja_mt_yield();
#endif /* CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64 */
}
ret = MAC_TX_NOACK;
if(NETSTACK_RADIO.receiving_packet() ||
NETSTACK_RADIO.pending_packet() ||
NETSTACK_RADIO.channel_clear() == 0) {
int len;
uint8_t ackbuf[CSMA_ACK_LEN];
if(CSMA_AFTER_ACK_DETECTED_WAIT_TIME > 0) {
wt = RTIMER_NOW();
watchdog_periodic();
while(RTIMER_CLOCK_LT(RTIMER_NOW(),
wt + CSMA_AFTER_ACK_DETECTED_WAIT_TIME)) {
#if CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64
simProcessRunValue = 1;
cooja_mt_yield();
#endif /* CONTIKI_TARGET_COOJA || CONTIKI_TARGET_COOJA_IP64 */
}
}
if(NETSTACK_RADIO.pending_packet()) {
len = NETSTACK_RADIO.read(ackbuf, CSMA_ACK_LEN);
if(len == CSMA_ACK_LEN && ackbuf[2] == dsn) {
/* Ack received */
ret = MAC_TX_OK;
} else {
/* Not an ack or ack not for us: collision */
ret = MAC_TX_COLLISION;
}
}
}
}
break;
case RADIO_TX_COLLISION:
ret = MAC_TX_COLLISION;
break;
default:
ret = MAC_TX_ERR;
break;
}
}
}
if(ret == MAC_TX_OK) {
last_sent_ok = 1;
}
packet_sent(ptr, ret, 1);
return last_sent_ok;
}
/*---------------------------------------------------------------------------*/
static void
transmit_from_queue(void *ptr)
{
struct neighbor_queue *n = ptr;
if(n) {
struct packet_queue *q = list_head(n->packet_queue);
if(q != NULL) {
LOG_INFO("preparing packet for ");
LOG_INFO_LLADDR(&n->addr);
LOG_INFO_(", seqno %u, tx %u, queue %d\n",
queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO),
n->transmissions, list_length(n->packet_queue));
/* Send first packet in the neighbor queue */
queuebuf_to_packetbuf(q->buf);
send_one_packet(n);
}
}
}
/*---------------------------------------------------------------------------*/
static void
schedule_transmission(struct neighbor_queue *n)
{
clock_time_t delay;
int backoff_exponent; /* BE in IEEE 802.15.4 */
backoff_exponent = MIN(n->collisions, CSMA_MAX_BE);
/* Compute max delay as per IEEE 802.15.4: 2^BE-1 backoff periods */
delay = ((1 << backoff_exponent) - 1) * backoff_period();
if(delay > 0) {
/* Pick a time for next transmission */
delay = random_rand() % delay;
}
LOG_DBG("scheduling transmission in %u ticks, NB=%u, BE=%u\n",
(unsigned)delay, n->collisions, backoff_exponent);
ctimer_set(&n->transmit_timer, delay, transmit_from_queue, n);
}
/*---------------------------------------------------------------------------*/
static void
free_packet(struct neighbor_queue *n, struct packet_queue *p, int status)
{
if(p != NULL) {
/* Remove packet from queue and deallocate */
list_remove(n->packet_queue, p);
queuebuf_free(p->buf);
memb_free(&metadata_memb, p->ptr);
memb_free(&packet_memb, p);
LOG_DBG("free_queued_packet, queue length %d, free packets %d\n",
list_length(n->packet_queue), memb_numfree(&packet_memb));
if(list_head(n->packet_queue) != NULL) {
/* There is a next packet. We reset current tx information */
n->transmissions = 0;
n->collisions = CSMA_MIN_BE;
/* Schedule next transmissions */
schedule_transmission(n);
} else {
/* This was the last packet in the queue, we free the neighbor */
ctimer_stop(&n->transmit_timer);
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
}
}
/*---------------------------------------------------------------------------*/
static void
tx_done(int status, struct packet_queue *q, struct neighbor_queue *n)
{
mac_callback_t sent;
struct qbuf_metadata *metadata;
void *cptr;
uint8_t ntx;
metadata = (struct qbuf_metadata *)q->ptr;
sent = metadata->sent;
cptr = metadata->cptr;
ntx = n->transmissions;
LOG_INFO("packet sent to ");
LOG_INFO_LLADDR(&n->addr);
LOG_INFO_(", seqno %u, status %u, tx %u, coll %u\n",
packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO),
status, n->transmissions, n->collisions);
free_packet(n, q, status);
mac_call_sent_callback(sent, cptr, status, ntx);
}
/*---------------------------------------------------------------------------*/
static void
rexmit(struct packet_queue *q, struct neighbor_queue *n)
{
schedule_transmission(n);
/* This is needed to correctly attribute energy that we spent
transmitting this packet. */
queuebuf_update_attr_from_packetbuf(q->buf);
}
/*---------------------------------------------------------------------------*/
static void
collision(struct packet_queue *q, struct neighbor_queue *n,
int num_transmissions)
{
struct qbuf_metadata *metadata;
metadata = (struct qbuf_metadata *)q->ptr;
n->collisions += num_transmissions;
if(n->collisions > CSMA_MAX_BACKOFF) {
n->collisions = CSMA_MIN_BE;
/* Increment to indicate a next retry */
n->transmissions++;
}
if(n->transmissions >= metadata->max_transmissions) {
tx_done(MAC_TX_COLLISION, q, n);
} else {
rexmit(q, n);
}
}
/*---------------------------------------------------------------------------*/
static void
noack(struct packet_queue *q, struct neighbor_queue *n, int num_transmissions)
{
struct qbuf_metadata *metadata;
metadata = (struct qbuf_metadata *)q->ptr;
n->collisions = CSMA_MIN_BE;
n->transmissions += num_transmissions;
if(n->transmissions >= metadata->max_transmissions) {
tx_done(MAC_TX_NOACK, q, n);
} else {
rexmit(q, n);
}
}
/*---------------------------------------------------------------------------*/
static void
tx_ok(struct packet_queue *q, struct neighbor_queue *n, int num_transmissions)
{
n->collisions = CSMA_MIN_BE;
n->transmissions += num_transmissions;
tx_done(MAC_TX_OK, q, n);
}
/*---------------------------------------------------------------------------*/
static void
packet_sent(void *ptr, int status, int num_transmissions)
{
struct neighbor_queue *n;
struct packet_queue *q;
n = ptr;
if(n == NULL) {
return;
}
/* Find out what packet this callback refers to */
for(q = list_head(n->packet_queue);
q != NULL; q = list_item_next(q)) {
if(queuebuf_attr(q->buf, PACKETBUF_ATTR_MAC_SEQNO) ==
packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO)) {
break;
}
}
if(q == NULL) {
LOG_WARN("packet sent: seqno %u not found\n",
packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO));
return;
} else if(q->ptr == NULL) {
LOG_WARN("packet sent: no metadata\n");
return;
}
LOG_INFO("tx to ");
LOG_INFO_LLADDR(&n->addr);
LOG_INFO_(", seqno %u, status %u, tx %u, coll %u\n",
packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO),
status, n->transmissions, n->collisions);
switch(status) {
case MAC_TX_OK:
tx_ok(q, n, num_transmissions);
break;
case MAC_TX_NOACK:
noack(q, n, num_transmissions);
break;
case MAC_TX_COLLISION:
collision(q, n, num_transmissions);
break;
case MAC_TX_DEFERRED:
break;
default:
tx_done(status, q, n);
break;
}
}
/*---------------------------------------------------------------------------*/
void
csma_output_packet(mac_callback_t sent, void *ptr)
{
struct packet_queue *q;
struct neighbor_queue *n;
static uint8_t initialized = 0;
static uint8_t seqno;
const linkaddr_t *addr = packetbuf_addr(PACKETBUF_ADDR_RECEIVER);
if(!initialized) {
initialized = 1;
/* Initialize the sequence number to a random value as per 802.15.4. */
seqno = random_rand();
}
if(seqno == 0) {
/* PACKETBUF_ATTR_MAC_SEQNO cannot be zero, due to a pecuilarity
in framer-802154.c. */
seqno++;
}
packetbuf_set_attr(PACKETBUF_ATTR_MAC_SEQNO, seqno++);
packetbuf_set_attr(PACKETBUF_ATTR_FRAME_TYPE, FRAME802154_DATAFRAME);
/* Look for the neighbor entry */
n = neighbor_queue_from_addr(addr);
if(n == NULL) {
/* Allocate a new neighbor entry */
n = memb_alloc(&neighbor_memb);
if(n != NULL) {
/* Init neighbor entry */
linkaddr_copy(&n->addr, addr);
n->transmissions = 0;
n->collisions = CSMA_MIN_BE;
/* Init packet queue for this neighbor */
LIST_STRUCT_INIT(n, packet_queue);
/* Add neighbor to the neighbor list */
list_add(neighbor_list, n);
}
}
if(n != NULL) {
/* Add packet to the neighbor's queue */
if(list_length(n->packet_queue) < CSMA_MAX_PACKET_PER_NEIGHBOR) {
q = memb_alloc(&packet_memb);
if(q != NULL) {
q->ptr = memb_alloc(&metadata_memb);
if(q->ptr != NULL) {
q->buf = queuebuf_new_from_packetbuf();
if(q->buf != NULL) {
struct qbuf_metadata *metadata = (struct qbuf_metadata *)q->ptr;
/* Neighbor and packet successfully allocated */
metadata->max_transmissions = packetbuf_attr(PACKETBUF_ATTR_MAX_MAC_TRANSMISSIONS);
if(metadata->max_transmissions == 0) {
/* If not set by the application, use the default CSMA value */
metadata->max_transmissions = CSMA_MAX_FRAME_RETRIES + 1;
}
metadata->sent = sent;
metadata->cptr = ptr;
list_add(n->packet_queue, q);
LOG_INFO("sending to ");
LOG_INFO_LLADDR(addr);
LOG_INFO_(", seqno %u, queue length %d, free packets %d\n",
packetbuf_attr(PACKETBUF_ATTR_MAC_SEQNO),
list_length(n->packet_queue), memb_numfree(&packet_memb));
/* If q is the first packet in the neighbor's queue, send asap */
if(list_head(n->packet_queue) == q) {
schedule_transmission(n);
}
return;
}
memb_free(&metadata_memb, q->ptr);
LOG_WARN("could not allocate queuebuf, dropping packet\n");
}
memb_free(&packet_memb, q);
LOG_WARN("could not allocate queuebuf, dropping packet\n");
}
/* The packet allocation failed. Remove and free neighbor entry if empty. */
if(list_length(n->packet_queue) == 0) {
list_remove(neighbor_list, n);
memb_free(&neighbor_memb, n);
}
} else {
LOG_WARN("Neighbor queue full\n");
}
LOG_WARN("could not allocate packet, dropping packet\n");
} else {
LOG_WARN("could not allocate neighbor, dropping packet\n");
}
mac_call_sent_callback(sent, ptr, MAC_TX_ERR, 1);
}
/*---------------------------------------------------------------------------*/
void
csma_output_init(void)
{
memb_init(&packet_memb);
memb_init(&metadata_memb);
memb_init(&neighbor_memb);
queuebuf_init();
}