nes-proj/Communication.c

419 lines
14 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/***************************************************************************//**
* @file Communication.c
* @brief Implementation of the Communication Driver for RL78G14 processor.
* @author DBogdan (dragos.bogdan@analog.com)
********************************************************************************
* Copyright 2012(c) Analog Devices, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Analog Devices, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* - The use of this software may or may not infringe the patent rights
* of one or more patent holders. This license does not release you
* from the requirement that you obtain separate licenses from these
* patent holders to use this software.
* - Use of the software either in source or binary form, must be run
* on or directly connected to an Analog Devices Inc. component.
*
* THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
********************************************************************************
* SVN Revision: $WCREV$
*******************************************************************************/
/******************************************************************************/
/***************************** Include Files **********************************/
/******************************************************************************/
#include "Communication.h" /* Communication definitions */
#include "RDKRL78G14.h" /* RDKRL78G14 definitions */
char IICA0_Flag;
/******************************************************************************/
/************************ Functions Definitions *******************************/
/******************************************************************************/
/***************************************************************************//**
* @brief I2C interrupt service routine.
*
* @return None.
*******************************************************************************/
#pragma vector = INTIICA0_vect
__interrupt static void
IICA0_Interrupt(void)
{
IICA0_Flag = 1;
}
/***************************************************************************//**
* @brief Initializes the SPI communication peripheral.
*
* @param lsbFirst - Transfer format (0 or 1).
* Example: 0x0 - MSB first.
* 0x1 - LSB first.
* @param clockFreq - SPI clock frequency (Hz).
* Example: 1000 - SPI clock frequency is 1 kHz.
* @param clockPol - SPI clock polarity (0 or 1).
* Example: 0x0 - Idle state for clock is a low level; active
* state is a high level;
* 0x1 - Idle state for clock is a high level; active
* state is a low level.
* @param clockEdg - SPI clock edge (0 or 1).
* Example: 0x0 - Serial output data changes on transition
* from idle clock state to active clock state;
* 0x1 - Serial output data changes on transition
* from active clock state to idle clock state.
*
* @return status - Result of the initialization procedure.
* Example: 0 - if initialization was successful;
* -1 - if initialization was unsuccessful.
*******************************************************************************/
char
SPI_Init(char lsbFirst,
long clockFreq,
char clockPol,
char clockEdg)
{
long mckFreq = 32000000;
char sdrValue = 0;
char delay = 0;
/* Configure the CS pins. */
PMOD1_CS_OUT;
PMOD1_CS_HIGH;
PMOD2_CS_OUT;
PMOD2_CS_HIGH;
ST7579_CS_OUT;
ST7579_CS_HIGH;
/* Enable input clock supply. */
SAU1EN = 1;
/* After setting the SAUmEN bit to 1, be sure to set serial clock select
register m (SPSm) after 4 or more fCLK clocks have elapsed. */
NOP;
NOP;
NOP;
NOP;
/* Select the fCLK as input clock. */
SPS1 = 0x0000;
/* Select the CSI operation mode. */
SMR11 = 0x0020;
clockPol = 1 - clockPol;
SCR11 = (clockEdg << 13) |
(clockPol << 12) |
0xC000 | /* Operation mode: Transmission/reception. */
0x0007; /* 8-bit data length. */
/* clockFreq = mckFreq / (sdrValue * 2 + 2) */
sdrValue = mckFreq / (2 * clockFreq) - 1;
SDR11 = sdrValue << 9;
/* Set the clock and data initial level. */
clockPol = 1 - clockPol;
SO1 &= ~0x0202;
SO1 |= (clockPol << 9) |
(clockPol << 1);
/* Enable output for serial communication operation. */
SOE1 |= 0x0002;
/* Configure the MISO pin as input. */
PM7 |= 0x02;
/* Configure SCLK and MOSI pins as output. */
P7 |= 0x05;
PM7 &= ~0x05;
/* Wait for the changes to take place. */
for(delay = 0; delay < 50; delay++) {
NOP;
}
/* Set the SEmn bit to 1 and enter the communication wait status */
SS1 |= 0x0002;
return 0;
}
/***************************************************************************//**
* @brief Writes data to SPI.
*
* @param slaveDeviceId - The ID of the selected slave device.
* @param data - Data represents the write buffer.
* @param bytesNumber - Number of bytes to write.
*
* @return Number of written bytes.
*******************************************************************************/
char
SPI_Write(char slaveDeviceId,
unsigned char *data,
char bytesNumber)
{
char byte = 0;
unsigned char read = 0;
unsigned short originalSCR = 0;
unsigned short originalSO1 = 0;
if(slaveDeviceId == 1) {
PMOD1_CS_LOW;
}
if(slaveDeviceId == 2) {
PMOD2_CS_LOW;
}
if(slaveDeviceId == 3) {
ST1 |= 0x0002;
originalSO1 = SO1;
originalSCR = SCR11;
SO1 &= ~0x0202;
SCR11 &= ~0x3000;
SS1 |= 0x0002;
ST7579_CS_LOW;
}
for(byte = 0; byte < bytesNumber; byte++) {
SIO21 = data[byte];
NOP;
while(SSR11 & 0x0040) ;
read = SIO21;
}
if(slaveDeviceId == 1) {
PMOD1_CS_HIGH;
}
if(slaveDeviceId == 2) {
PMOD2_CS_HIGH;
}
if(slaveDeviceId == 3) {
ST7579_CS_HIGH;
ST1 |= 0x0002;
SO1 = originalSO1;
SCR11 = originalSCR;
SS1 |= 0x0002;
}
return bytesNumber;
}
/***************************************************************************//**
* @brief Reads data from SPI.
*
* @param slaveDeviceId - The ID of the selected slave device.
* @param data - Data represents the write buffer as an input parameter
* and the read buffer as an output parameter.
* @param bytesNumber - Number of bytes to read.
*
* @return Number of read bytes.
*******************************************************************************/
char
SPI_Read(char slaveDeviceId,
unsigned char *data,
char bytesNumber)
{
char byte = 0;
unsigned short originalSCR = 0;
unsigned short originalSO1 = 0;
if(slaveDeviceId == 1) {
PMOD1_CS_LOW;
}
if(slaveDeviceId == 2) {
PMOD2_CS_LOW;
}
if(slaveDeviceId == 3) {
ST1 |= 0x0002;
originalSO1 = SO1;
originalSCR = SCR11;
SO1 &= ~0x0202;
SCR11 &= ~0x3000;
SS1 |= 0x0002;
ST7579_CS_LOW;
}
for(byte = 0; byte < bytesNumber; byte++) {
SIO21 = data[byte];
NOP;
while(SSR11 & 0x0040) ;
data[byte] = SIO21;
}
if(slaveDeviceId == 1) {
PMOD1_CS_HIGH;
}
if(slaveDeviceId == 2) {
PMOD2_CS_HIGH;
}
if(slaveDeviceId == 3) {
ST7579_CS_HIGH;
ST1 |= 0x0002;
SO1 = originalSO1;
SCR11 = originalSCR;
SS1 |= 0x0002;
}
return bytesNumber;
}
/***************************************************************************//**
* @brief Initializes the I2C communication peripheral.
*
* @param clockFreq - I2C clock frequency (Hz).
* Example: 100000 - SPI clock frequency is 100 kHz.
* @return status - Result of the initialization procedure.
* Example: 0 - if initialization was successful;
* -1 - if initialization was unsuccessful.
*******************************************************************************/
char
I2C_Init(long clockFreq)
{
long fckFreq = 32000000;
unsigned char wlValue = 0;
unsigned char whValue = 0;
/* Enable interrupts */
EI;
/* Enable input clock supply. */
IICA0EN = 1;
/* Set the fast mode plus operation. */
SMC0 = 1;
/* Set transfer rate. */
wlValue = (unsigned char)((0.5 * fckFreq) / clockFreq);
whValue = (unsigned char)(wlValue - (fckFreq / (10 * clockFreq)));
IICWL0 = wlValue;
IICWH0 = whValue;
STCEN0 = 1; /* After operation is enabled, enable generation of a start */
/* condition without detecting a stop condition. */
WTIM0 = 1; /* Interrupt request is generated at the ninth clocks */
/* falling edge. */
/* Enable I2C operation. */
IICE0 = 1;
/* Configure SCLA0 and SDAA0 pins as digital output. */
P6 &= ~0x03;
PM6 &= ~0x03;
return 0;
}
/***************************************************************************//**
* @brief Writes data to a slave device.
*
* @param slaveAddress - Adress of the slave device.
* @param dataBuffer - Pointer to a buffer storing the transmission data.
* @param bytesNumber - Number of bytes to write.
* @param stopBit - Stop condition control.
* Example: 0 - A stop condition will not be sent;
* 1 - A stop condition will be sent.
*
* @return status - Number of read bytes or 0xFF if the slave address was
* not acknowledged by the device.
*******************************************************************************/
char
I2C_Write(char slaveAddress,
unsigned char *dataBuffer,
char bytesNumber,
char stopBit)
{
char byte = 0;
char status = 0;
IICAMK0 = 1; /* Interrupt servicing disabled. */
STT0 = 1; /* Generate a start condition. */
IICAMK0 = 0; /* Interrupt servicing enabled. */
/* Send the first byte. */
IICA0_Flag = 0;
IICA0 = (slaveAddress << 1);
while(IICA0_Flag == 0) ;
if(ACKD0) { /* Acknowledge was detected. */
for(byte = 0; byte < bytesNumber; byte++) {
IICA0_Flag = 0;
IICA0 = *dataBuffer;
while(IICA0_Flag == 0) ;
dataBuffer++;
}
status = bytesNumber;
} else { /* Acknowledge was not detected. */
status = 0xFF;
}
if(stopBit) {
SPT0 = 1; /* Generate a stop condition. */
while(IICBSY0) ; /* Wait until the I2C bus status flag is cleared. */
}
return status;
}
/***************************************************************************//**
* @brief Reads data from a slave device.
*
* @param slaveAddress - Adress of the slave device.
* @param dataBuffer - Pointer to a buffer that will store the received data.
* @param bytesNumber - Number of bytes to read.
* @param stopBit - Stop condition control.
* Example: 0 - A stop condition will not be sent;
* 1 - A stop condition will be sent.
*
* @return status - Number of read bytes or 0xFF if the slave address was
* not acknowledged by the device.
*******************************************************************************/
char
I2C_Read(char slaveAddress,
unsigned char *dataBuffer,
char bytesNumber,
char stopBit)
{
char byte = 0;
char status = 0;
IICAMK0 = 1; /* Interrupt servicing disabled. */
STT0 = 1; /* Generate a start condition. */
IICAMK0 = 0; /* Interrupt servicing enabled. */
/* Send the first byte. */
IICA0_Flag = 0;
IICA0 = (slaveAddress << 1) + 1;
while(IICA0_Flag == 0) ;
if(ACKD0) { /* Acknowledge was detected. */
ACKE0 = 1; /* Enable acknowledgment. */
for(byte = 0; byte < bytesNumber; byte++) {
if(byte == (bytesNumber - 1)) {
ACKE0 = 0U; /* Disable acknowledgment. */
}
WREL0 = 1U; /* Cancel wait. */
IICA0_Flag = 0;
while(IICA0_Flag == 0) ;
*dataBuffer = IICA0;
dataBuffer++;
}
status = bytesNumber;
} else { /* Acknowledge was not detected. */
status = 0xFF;
}
if(stopBit) {
SPT0 = 1; /* Generate a stop condition. */
while(IICBSY0) ; /* Wait until the I2C bus status flag is cleared. */
}
return status;
}